Из чего состоит клетка. Основные свойства клетки

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Клетки - строительный материал тела. Из них состоят ткани, железы, системы и, наконец, организм.

Клетки

Клетки бывают разных форм и размеров, но для всех из них есть общая схема строения.

Клетка состоит из протоплазмы, бесцветного, прозрачного желеподобного вещества, состоящего на 70% из воды и из разных органических и неорганических веществ. Большинство клеток состоят из трех основных частей: внешняя оболочка, называемая мембраной, центр - ядро и полужидкая прослойка - цитоплазма.

  1. Клеточная мембрана состоит из жиров и протеинов; она полупроницаема, т.е. пропускает такие вещества, как кислород и оксид углерода.
  2. Ядро состоит из особой протоплазмы, называемой нуклеоплазмой. Ядро часто называют «информационным центром» клетки, поскольку в нем содержится вся информация о росте, развитии и функционировании клетки в форме ДНК (дезоксирибонуклеиновая кислота). В ДНК содержится материал, необходимый для развития хромосом, которые несут наследственную информацию от материнской клетки к дочерней. В клетках человека 46 хромосом, по 23 от каждого родителя. Ядро окружено мембраной, которая отделяет его от других структур клетки.
  3. В цитоплазме находится множество структур, называемых оргаиеллами, или «маленькими органами», в число которых входят: митохондрии, рибосомы, аппарат Гольджи, лизосомы, эндоплазматическая сеть и центриоли:
  • Митохондрии - сферические, продолговатые структуры, которые часто именуют «энергетическими центрами», поскольку они обеспечивают клетку силой, необходимой для производства энергии.
  • Рибосомы - гранулярные образования, источник протеина, необходимого клетке для роста и восстановления.
  • Аппарат Гольджи состоит из 4-8 соединенных между собой мешочков, которые производят, сортируют и поставляют протеины в другие части клетки, для которых они являются источником энергии.
  • Лизосомы - сферические структуры, которые вырабатывают вещества для избавления от поврежденных или изношенных частей клетки. Они являются «очистителями» клетки.
  • Эндоплазматическая сеть - сеть каналов, по которым вещества транспортируются внутри клетки.
  • Центриоли - две тонкие цилиндрические структуры, расположенные под прямым углом. Они участвуют в формировании новых клеток.

Клетки не существуют самостоятельно; они работают в группах из подобных клеток - тканях.

Ткани

Эпителиальная ткань

Из эпителиальной ткани состоят стенки и покровы многих органов и сосудов; различают два ее типа: простая и сложная.

Простая эпителиальная ткань состоит из одного слоя клеток, которые бывают четырех видов:

  • Чешуйчатая: плоские клетки лежат шкалообразно, край к краю, в ряд, подобно кафельному полу. Чешуйчатый покров встречается у частей тела, которые мало подвержены износу и повреждению, например стенки альвеол легких в респираторной системе и стенки сердца, кровеносные и лимфатические сосуды в кровеносной системе.
  • Кубовидная: кубические клетки, расположенные в ряд, формируют стенки некоторых желез. Эта ткань пропускает жидкость в процессе секреции, например при выделении пота из потовой железы.
  • Столбчатая: ряд высоких клеток, которые формируют стенки многих органов пищеварительной и мочевыделительной систем. Среди столбчатых клеток - кубкообразные, которые производят водянистую жидкость - слизь.
  • Реснитчатая: одинарный слой чешуйчатых, кубовидных или столбчатых клеток, имеющих выступы, называемые ресничками. Все реснички непрерывно совершают волнообразные движения в одну сторону, что позволяет веществам, например слизи или ненужным субстанциям, продвигаться по ним. Из такой ткани сформированы стенки органов дыхательной системы и репродуктивных органов. 2. Сложная эпителиальная ткань состоит из множества слоев клеток и бывает двух основных видов.

Слоистая - множество слоев чешуйчатых, кубовидных или столбчатых клеток, из которых формируется защитный слой. Клетки либо сухие и затвердевшие, либо влажные и мягкие. В первом случае клетки ороговевшие, т.е. они высохли, и получился волокнистый протеин - кератин. Мягкие клетки - не ороговевшие. Примеры твердых клеток: верхний слой кожи, волосы и ногти. Покровы из мягких клеток -слизистая оболочка рта и язык.
Переходная - по строению схожа с неороговевшим слоистым эпителием, но клетки более крупные и округлые. Это делает ткань эластичной; из нее образованы такие органы, как мочевой пузырь, то есть те, которые должны растягиваться.

Как простой, так и сложный эпителий , должны прикрепляться к соединительной ткани. Место соединения двух тканей известно как нижняя мембрана.

Соединительная ткань

Бывает твердой, полутвердой и жидкой. Насчитывают 8 видов соединительной ткани: ареолярная, жировая, лимфатическая, эластичная, фиброзная, хрящевая, костная и кровяная.

  1. Ареолярная ткань - полутвердая, проницаемая, находится по всему телу, являясь связующей и опорной для других тканей. Она состоит из протеиновых волокон коллагена, эластина и ретикулина, которые обеспечивают ее силу, эластичность и прочность.
  2. Жировая ткань - полутвердая, присутствует там же, где и ареолярная, формируя изоляционный подкожный слой, который способствует сохранению телом тепла.
  3. Лимфатическая ткань - полутвердая, содержащая клетки, которые защищают организм, поглощая бактерии. Лимфатическая ткань формирует те органы, которые ответственны за контроль здоровья организма.
  4. Эластичная ткань - полутвердая, является основой эластичных волокон, которые могут растягиваться и при необходимости восстанавливать форму. Примером является желудок.
  5. Фиброзная ткань - прочная и твердая, состоящая из соединительных волокон из протеина коллагена. Из этой ткани образованы сухожилия, которые соединяют мышцы и кости, и связки, соединяющие кости между собой.
  6. Хрящевая ткань - твердая, обеспечивающая связь и защиту в форме гиалиновых хрящей, соединяющих кости с суставами, волокнистых хрящей, соединяющих кости с позвоночником, и эластичных хрящей уха.
  7. Костная ткань - твердая. Из нее состоят твердый, плотный компактный слой кости и несколько менее плотное губчатое вещество кости, которые вместе формируют костную систему.
  8. Кровь - жидкое вещество, состоящее на 55% из плазмы и на 45% из клеток. Плазма составляет основную жидкую массу крови, а клетки в ней выполняют защитную и соединительную функции.

Мышечная ткань

Мышечная ткань обеспечивает движение тела. Различают скелетную, висцеральную и кардиальную виды мышечной ткани.

  1. Скелетная мышечная ткань - бороздчатая. Она отвечает за сознательное движение тела, например движение при ходьбе.
  2. Висцеральная мышечная ткань - гладкая. Она ответственна за непроизвольные движения, такие как передвижение пищи по пищеварительной системе.
  3. Сердечная мышечная ткань обеспечивает пульсацию сердца - сердцебиение.

Нервная ткань

Нервная ткань выглядит как пучки волокон; она составлена клетками двух видов: нейронами и нейроглиями. Нейроны - длинные, чувствительные клетки, которые принимают сигналы и реагируют на них. Нейроглии поддерживают и защищают нейроны.

Органы и железы

В организме ткани разных видов соединяются и образуют органы и железы. Органы имеют особое строение и функции; они составлены тканями двух или более видов. К органам относятся сердце, легкие, печень, мозг и желудок. Железы состоят из эпителиальной ткани и вырабатывают особые вещества. Различают два типа желез: эндокринные и экзокринньте. Эндокринные железы называют железами внутренней секреции, т.к. они выбрасывают вырабатываемые вещества - гормоны - непосредственно в кровь. Экзокринные (железы внешней секреции) - в каналы, например, пот из соответствующих желез по соответствующим каналам доходит до поверхности кожи.

Системы организма

Группы связанных между собой органов и желез, которые выполняют сходные функции, формируют системы мы организма. К ним относятся: покровная, скелетная, мышечная, респираторная (дыхательная), кровеносная (циркуляторная), пищеварительная, мочеполовая, нервная и эндокринная.

Организм

В организме все системы работают сообща, обеспечивая жизнь человека.

Размножение

Мейоз : новый организм образуется при слиянии мужской спермы и женской яйцеклетки. И в яйцеклетке, и в сперме содержится по 23 хромосомы, в целой клетке - в два раза больше. Когда происходит оплодотворение, яйцеклетка и сперматозоид сливаются, образуя зиготу, у которой
46 хромосом (по 23 от каждого из родителей). Зигота делится (митоз), и формируется эмбрион, зародыш и, наконец, человек. В процессе этого развития клетки приобретают индивидуальные функции (некоторые из них становятся мышечными, другие костными и т.д.).

Митоз - простое деление клеток - продолжается на протяжении всей жизни. Существуют четыре стадии митоза: профаза, метафаза, анафаза и телофаза.

  1. Во время профазы делится каждая из двух центриолей клетки, при этом двигаясь в противоположные части клетки. В то же самое время хромосомы в ядре образуют пары, а мембрана ядра начинает разрушаться.
  2. Во время метафазы хромосомы размещаются по оси клетки между центриолями, одновременно с этим исчезает защитная мембрана ядра.
    Во время анафазы продолжается раздвижение центриолей. Отдельные хромосомы начинают движение в противоположных направлениях, следуя за центриолями. Цитоплазма в центре клетки суживается, и клетка сжимается. Процесс деления клетки называется цитокинезом.
  3. Во время телофазы цитоплазма продолжает сжиматься, пока не образуются две идентичные дочерние клетки. Вокруг хромосом формируется новая защитная мембрана, а у каждой новой клетки - по одной паре центриолей. Сразу после деления в образовавшихся дочерних клетках недостаточно органелл, но по мере роста, называемого интерфазой, они достраиваются, перед тем как клетки снова поделятся.

Частота деления клетки зависит от ее вида, к примеру, клетки кожи размножаются быстрее, чем костные.

Выделение

Ненужные вещества образуются в результате дыхания и обмена веществ и должны быть удалены из клетки. Процесс их удаления из клетки происходит по той же схеме, что и впитывание питательных веществ.

Движение

Маленькие волоски (реснички) некоторых клеток совершают движения, а целые кровяные клетки двигаются по всему организму.

Чувствительность

Клетки играют огромную роль в формировании тканей, желез, органов и систем, которые мы будем подробно изучать, продолжая наше путешествие по организму.

Возможные нарушения

Болезни возникают в результате разрушения клеток. С развитием болезни это отражается на тканях, органах и системах и может оказать влияние на весь организм.

Клетки могут разрушаться по ряду причин: генетических (наследственные заболевания), дегенеративных (при старении), зависящих от окружающей среды, например при слишком высоких температурах, или химических (отравления).

  • Вирусы могут существовать только в живых клетках, которые они захватывают и в которых размножаются, вызывая инфекции, например простудные (вирус герпеса).
  • Бактерии могут жить и вне тела и делятся на патогенные и непатогенные. Патогенные бактерии вредны и вызывают заболевания, такие как импетиго, а непатогенные безвредны: они поддерживают здоровье организма. Некоторые такие бактерии живут на поверхности кожи и защищают ее.
  • Грибки используют для жизни другие клетки; они тоже бывают патогенными и непатогенными. Патогенные грибки - это, например, грибки ног. Некоторые непатогенные грибки используют в производстве антибиотиков, в том числе пенициллина.
  • Черви, насекомые и клещи являются возбудителями заболеваний. К ним относятся глисты, блохи, вши, чесоточные клещи.

Микробы заразны, т.е. могут передаваться от человека к человеку в процессе инфицирования. Заражение может произойти при личном контакте, например прикосновении, или при контакте с инфицированным инструментом, таким как щетка для волос. При болезни могут проявляться симптомы: воспаление, жар, отеки, аллергические реакции и опухоли.

  • Воспаление - краснота, жар, отек, боль и утеря способности нормально функционировать.
  • Жар - повышенная температура тела.
  • Отек - припухлость в результате избыточного количества жидкости в ткани.
  • Опухоль - аномальное разрастание ткани. Может быть доброкачественной (неопасной) и злокачественной (может прогрессировать, приводя к летальному исходу).

Заболевания можно классифицировать, разделяя на локальные и системные, наследственные и приобретенные, острые и хронические.

  • Локальные - болезни, при которых затронута определенная часть или зона организма.
  • Системные - болезни, при которых поражен весь организм или несколько его частей.
  • Наследственные заболевания есть уже при рождении.
  • Приобретенные заболевания развиваются после рождения.
  • Острые - заболевания, которые возникают внезапно и быстро проходят.
  • Хронические болезни долговременны.

Жидкость

Человеческий организм на 75% состоит из воды. Большая часть этой воды, находящаяся в клетках, называется внутриклеточной жидкостью. Остальная вода содержится в крови и слизи и называется внеклеточной жидкостью. Количество воды в организме связано с содержанием в нем жировой ткани, а также от пола и возраста. В жировых клетках не содержится вода, поэтому в организме худых людей процентное содержание воды выше, чем у тех, у кого большая жировая прослойка. Кроме того, у женщин обычно больше жировой ткани, чем у мужчин. С возрастом содержание воды уменьшается (больше всего воды в организмах младенцев). Большую часть воды обеспечивают еда и питье. Другой источник воды - диссимиляция в процессе обмена веществ. Ежедневная потребность человека в воде - около 1,5 литра, т.е. столько же, сколько организм теряет за день. Вода уходит из организма с мочой, фекалиями, потом и при дыхании. Если тело теряет больше воды, чем получает, происходит обезвоживание. Баланс воды в организме регулируется жаждой. Когда организм обезвоживается, во рту возникает ощущение сухости. Мозг реагирует на этот сигнал жаждой. Возникает желание пить, чтобы восстановить баланс жидкости в организме.

Отдых

Каждый день есть время, когда человек может спать. Сон - это отдых для тела и мозга. Во время сна тело частично находится в сознании, большинство его частей временно приостанавливают свою работу. Организму нужно это время полного отдыха, чтобы «подзарядить батарейки». Потребность в сне зависит от возраста, рода деятельности, образа жизни и уровня стресса. Она также индивидуальна для каждого человека и варьирует от 16 часов в сутки для младенцев до 5 для пожилых людей. Сон идет в две фазы: медленный и быстрый. Медленный сон глубокий, без сновидений, он составляет около 80% всего сна. Во время быстрого сна мы видим сны, обычно три-четыре раза за ночь, продолжительностью до часа.

Активность

Наравне со сном организм нуждается в активности, чтобы оставаться здоровым. В организме человека есть клетки, ткани, органы и системы, ответственные за движение, некоторые из них контролируемы. Если человек не пользуется этой возможностью и предпочитает сидячий образ жизни, контролируемые движения становятся ограниченными. В результате недостаточной физической нагрузки может снизиться умственная активность, и фраза «если не будешь пользоваться, потеряешь» относится и к телу, и к разуму. Баланс между отдыхом и активностью разный для разных систем организма и будет рассмотрен в соответствующих главах.

Воздух

Воздух - это смесь атмосферных газов. Он состоит приблизительно на 78% из азота, на 21% из кислорода, и еще 1% составляют другие газы, в том числе углекислый. Кроме этого, воздух содержит определенное количество влаги, примесей, пыли и т.д. Вдыхая, мы употребляем воздух, используя примерно 4% кислорода, содержащегося в нем. В процессе потребления кислорода образуется углекислый газ, поэтому в воздухе, который мы выдыхаем, больше оксида углерода и меньше кислорода. Уровень азота в воздухе не меняется. Кислород необходим для поддержания жизни, без него все существа погибли бы за считанные минуты. Другие компоненты воздуха могут быть вредны для здоровья. Уровень загрязнения воздуха бывает разным; следует по возможнос ти избегать вдыхания загрязненного воздуха. Например, при вдыхании воздуха, содержащего табачный дым, происходит пассивное курение, которое может оказать отрицательное воздействие на организм. Искусство дыхания - то, что чаще всего сильно недооценивают. Оно будет развиваться, чтобы мы могли использовать наиболее полно эту естественную способность.

Возраст

Старение - это прогрессирующее ухудшение способности организма реагировать на поддержание гомеостаза. Клетки способны самовоспроизводится митозом; считается, что в них запрограммировано определенное время, в течение которого они размножаются. Это подтверждается постепенным замедлением и в конце концов прекращением жизненно важных процессов. Еще один фактор, влияюший на процесс старения, -эффект свободных радикалов. Свободные радикалы -токсичные вещества, сопровождающие энергетический обмен. К ним относятся загрязнение, радиация и некоторая пища. Они причиняют вред определенным клеткам, потому что влияют не их способность усваивать питательные вещества и избавляться от продуктов распада. Итак, старение вызывает заметные изменения в анатомии и физиологии человека. В этом процессе постепенного ухудшения усиливается склонность организма к заболеваниям, появляются физические и эмоциональные симптомы, с которыми трудно бороться.

Цвет

Цвет - необходимая часть жизни. Каждая клетка для того, чтобы выжить, нуждается в свете, а в нем содержится цвет. Растениям свет нужен для выработки кислорода, который людям необходим для дыхания. Радиоактивная солнечная энергия дает питание, которое необходимо физическим, эмоциональным и духовным аспектам человеческой жизни. Изменения света влекут за собой изменения в организме. Так, восход солнца пробуждает наш организм, в то время как закат и связанное с ним исчезновение света вызывает сонливость. В свете есть и видимые, и невидимые цвета. Около 40% солнечных лучей несут видимые цвета, которые становятся такими из-за разницы их частот и длин волн. К видимым цветам относятся красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый - цвета радуги. Совмещенные, эти цвета образуют свет.

Свет проникает в организм через кожу и глаза. Глаза, раздражаемые светом, подают сигнал мозгу, который интерпретирует цвета. Кожа ощущает разные колебания, производимые разными цветами. Этот процесс большей частью подсознательный, но его можно вывести на сознательный уровень, тренируя восприятие цветов руками и пальцами, что иногда называют «лечением цветом».

Определенный цвет может производить только один эффект на организм, в зависимости от длины его волн и частоты колебаний, кроме того, разные цвета связывают с разными частями тела. Мы подробнее ознакомимся с ними в следующих главах.

Знание

Знание терминов анатомии и физиологии поможет вам лучше узнать человеческий организм.

Анатомия относится к строению, и есть специальные термины, которыми обозначают анатомические понятия:

  • Передний - находящийся в передней части корпуса
  • Задний - находящийся в задней части корпуса
  • Нижний - относящийся к нижней части тела
  • Верхний - расположенный выше
  • Внешний - находящийся снаружи организма
  • Внутренний - находящийся внутри тела
  • Лежащий навзничь - опрокинувшийся на спину, вверх лицом
  • Лежащий ничком - размещенный лицом вниз
  • Глубокий - находящийся под поверхностью
  • Поверхностный - лежащий у поверхности
  • Продольный - расположенный по длине
  • Поперечный - лежащий поперек
  • Средняя линия - центральная линия тела, от макушки до пальцев ног
  • Срединный - расположенный посередине
  • Боковой - удаленный от середины
  • Периферический - максимально удаленный от прикрепления
  • Ближний - ближайший к прикреплению

Физиология относится к функционированию.

В ней используются следующие термины:

  • Гистология - клетки и ткани
  • Дерматология - покровная система
  • Остеология - скелетная система
  • Миология - мышечная система
  • Кардиология - сердце
  • Гематология - кровь
  • Гастроэнтерология - пищеварительная система
  • Гинекология - женская репродуктивная система
  • Нефрология - мочевыделительная система
  • Неврология - нервная система
  • Эндокринология - выделительная система

Специальный уход

Гомеостаз - это состояние, при котором клетки, ткани, органы, железы, системы органов работают в гармонии с собой и друг с другом.

Эта совместная работа обеспечивает наилучшие условия для здоровья отдельных клеток, ее поддержание - необходимое условие для благополучия всего организма. Один из главных факторов, влияющих на гомеостаз, -стресс. Стресс бывает внешним, например колебания температуры, шумы, недостаток кислорода и т.д., или внутренним: боль, волнение, страх и т. д. Организм сам борется с ежедневными стрессами, у него для этого есть эффективные механизмы противодействия. И все же нужно держать ситуацию под контролем, чтобы не произошел дисбаланс. Серьезный дисбаланс, вызванный излишним продолжительным стрессом, может подорвать здоровье.

Косметические и оздоровительные процедуры помогают клиенту осознать действие стресса, возможно, вовремя, а дальнейшая терапия и советы специалиста предотвращают возникновение дисбаланса и способствуют поддержанию гомеостаза.

В основе практически всех живых организмов лежит простейшая единица - клетка. Фото этой крошечной биосистемы, а также ответы на самые интересные вопросы вы сможете найти в этой статье. Какова структура и размеры клетки? Какие функции в организме она выполняет?

Клетка - это...

Ученым неизвестно определенное время возникновения первых живых клеток на нашей планете. В Австралии были найдены их остатки возрастом 3,5 миллиарда лет. Однако точно установить их биогенность так и не удалось.

Клетка - это простейшая единица в строении почти всех живых организмов. Исключением являются лишь вирусы и вироиды, которые относятся к неклеточным формам жизни.

Клетка - это структура, которая способна существовать автономно и самовоспроизводиться. Её размеры могут быть разными - от 0,1 до 100 мкм и более. Однако стоит отметить, что неоплодотворенные яйца пернатых тоже можно считать клетками. Таким образом, самой крупной по размеру клеткой на Земле можно считать страусиное яйцо. В диаметре оно может достигать 15 сантиметров.

Наука, изучающая особенности жизнедеятельности и структуру клетки организма, называется цитологией (или клеточной биологией).

Открытие и исследование клетки

Роберт Гук - английский ученый, который известен всем нам из школьного курса физики (именно он открыл закон о деформации упругих тел, который был назван его именем). Помимо этого, именно он первым увидел живые клетки, рассматривая через свой микроскоп срезы пробкового дерева. Они напомнили ему пчелиные соты, поэтому он назвал их cell, что в переводе с английского означает "ячейка".

Клеточная структура растений была подтверждена позже (в конце XVII столетия) многими исследователями. А вот на организмы животных клеточная теория была распространена лишь в начале XIX века. Примерно тогда же ученые всерьез заинтересовались содержимым (структурой) клеток.

Детально рассмотреть клетку и её структуру позволили мощные световые микроскопы. Они до сих пор остаются основным инструментом в исследовании этих систем. А появление в прошлом столетии электронных микроскопов дало возможность биологам изучать и ультраструктуру клеток. Среди методов их исследования также можно выделить биохимические, аналитические и препаративные. Также вы можете узнать, как выглядит живая клетка, - фото приведено в статье.

Химическая структура клетки

В состав клетки входит множество различных веществ:

  • органогены;
  • макроэлементы;
  • микро- и ультрамикроэлементы;
  • вода.

Около 98% химического состава клетки составляют так называемые органогены (углерод, кислород, водород и азот), еще 2% - макроэлементы (магний, железо, кальций и другие). Микро- и ультрамикроэлементы (цинк, марганец, уран, йод и т. д.) - не более 0,01% всей клетки.

Прокариоты и эукариоты: основные отличия

Исходя из особенностей структуры клетки, все живые организмы на Земле делятся на два надцарства:

  • прокариоты - более примитивные организмы, которые сформировались эволюционным путем;
  • эукариоты - организмы, клеточное ядро которых является полностью оформленным (организм человека также относится к эукариотам).

Основные отличия клетки эукариотов от прокариотов:

  • более крупные размеры (10-100 мкм);
  • способ деления (мейоз или митоз);
  • тип рибосом (80S-рибосомы);
  • тип жгутиков (в клетках организмов эукариотов жгутики состоят из микротрубочек, которые окружены мембраной).

Строение клетки эукариота

В структуру эукариотической клетки входят следующие органоиды:

  • ядро;
  • цитоплазма;
  • аппарат Гольджи;
  • лизосомы;
  • центриоли;
  • митохондрии;
  • рибосомы;
  • везикулы.

Ядро - это главный структурный элемент клетки эукариота. Именно в нем хранится вся генетическая информация о конкретном организме (в молекулах ДНК).

Цитоплазма - особое вещество, в котором содержится ядро и все остальные органоиды. Благодаря специальной сети микротрубочек, она обеспечивает перемещение веществ внутри клетки.

Аппарат Гольджи - это система плоских цистерн, в которых постоянно созревают белки.

Лизосомы - маленькие тельца с одиночной мембраной, основная функция которых - расщеплять отдельные органоиды клетки.

Рибосомы - универсальные ультрамикроскопические органоиды, предназначением которых является синтез белков.

Митохондрии - это своеобразные "легкие" клетки, а также её главный источник энергии.

Основные функции клетки

Клетка живого организма призвана выполнять несколько важнейших функций, обеспечивающих жизнедеятельность этого самого организма.

Важнейшей функцией клетки является обмен веществ. Так, именно она расщепляет сложные вещества, превращая их в простые, а также синтезирует более сложные соединения.

Кроме этого, все клетки способны реагировать на воздействие внешних раздражающих факторов (температура, свет и так далее). Большинство из них также имеют способность к регенерации (самовосстановлению) при помощи деления.

Нервные клетки также могут реагировать на внешние раздражители посредством образования биоэлектрических импульсов.

Все вышеназванные функции клетки обеспечивают жизнедеятельность организма.

Заключение

Итак, клетка - это наименьшая элементарная живая система, которая является основной единицей в строении любого организма (животного, растения, бактерии). В её строении выделяют ядро и цитоплазму, в которой содержатся все органоиды (клеточные структуры). Каждый из них выполняет свои определенные функции.

Размер клетки колеблется в широких пределах - от 0,1 до 100 микрометров. Особенности строения и жизнедеятельности клеток изучает специальная наука - цитология.

Можно сказать, что живые организмы - это сложная система, выполняющая различные функции необходимые для нормальной жизнедеятельности. Они состоят из клеток. Поэтому, подразделяются на многоклеточные и одноклеточные. Именно клетка составляет основу любого организма, независимо от его структуры.

Одноклеточные организмы имеют только один У многоклеточных живых организмов представлены различные типы клеток, которые отличаются по своему функциональному значению. Изучением клетки занимается цитология, которую включает в себя наука биология.

Строение клетки практически одинаково для любого их типа. Они различаются по функциям, размерам и форме. Химический состав тоже типичен для всех клеток живых организмов. Клетка содержит главные молекулы: РНК, белки, ДНК и элементы полисахаридов и липидов. Почти на 80 процентов клетка состоит из воды. Кроме этого в ее состав входят сахара, нуклеотиды, аминокислоты и прочие продукты процессов, происходящих в клетке.

Строение клетки живого организма состоит из множества компонентов. Поверхность клетки составляет мембрана. Она позволяет обеспечить клетке проникновение только определенных веществ. Между клеткой и мембраной находится жидкое Именно мембрана является посредником в обменных процессах, происходящих между клеткой и межклеточной жидкостью.

Основным компонентом клетки является цитоплазма. Это вещество вязкой, полужидкой консистенции. В ней содержится органоиды, которые выполняют ряд функций. К ним относятся следующие компоненты: клеточный центр, лизосомы, ядро, митохондрии, эндоплазматическая сеть, рибосомы и комплекс Гольджи.Каждый из этих компонентов обязательно входит в строение клетки.

Вся цитоплазма состоит из множества канальцев и полостей, которые представляют собой эндоплазматическую сеть. Вся эта система синтезирует, накапливает и продвигает органические соединения, которые вырабатывает клетка. Эндоплазматическая сеть участвует и в синтезе белка.

Помимо нее в синтезе белка принимают участие рибосомы, которые содержат РНК и белок. Комплекс Гольджи влияет на образование лизосом и накапливает Это специальные полости с пузырьками на концах.

Клеточный центр содержит два тельца, участвующих в Клеточный центр расположен непосредственно возле ядра.

Так постепенно мы подобрались к главному компоненту в строение клетки - ядру. Это самая важная часть клетки. Оно содержит ядрышко, белки, жиры, углеводы и хромосомы. Вся внутренность ядра заполнена ядерным соком. Всю информацию о наследственности содержат клетки тела человека предусматривает наличие 46 хромосом. Половые клетки состоят из 23 хромосом.

В строение клеток входят и лизосомы. Они очищают клетку от отмерших частиц.
Клетки, кроме основных компонентов, содержат и некоторые соединения органического и неорганического характера. Как уже было сказано, клетка состоит на 80 процентов из воды. Еще одним неорганическим соединением, которое входит в ее состав, являются соли. Вода играет важную роль в жизнедеятельности клетки. Она является главным участникам химических реакций, в качестве переносчика веществ и вывода из клетки вредных соединений. Соли способствуют правильному распределению воды в структуре клетки.

Среди органических соединений присутствуют: водород, кислород, сера, железо, магний, цинк, азот, йод, фосфор. Они являются жизненно необходимыми для преобразования в сложные органические соединения.

Клетка - это основная составляющая любого живого организма. Ее структура - сложный механизм, в котором не должно быть ни каких сбоев. Иначе, это приведет к неизменным процессам.

Клетки представляют собой основные единицы, из которых построены все живые организмы. Современному читателю, считающему подобное утверждение тривиальным, может показаться удивительным, что признание универсальности клеточного строения всего живого произошло всего лишь каких-нибудь 100 с лишним лет назад.

Впервые клеточная теория была сформулирована в 1839 г. ботаником Маттиасом Якобом Шлейденом и зоологом Теодором Шванном; эти исследователи пришли к ней независимо друг от друга, в результате изучения растительных и животных тканей. Вскоре после этого, в 1859 г., Рудольф Вирхов подтвердил исключительную роль клетки как вместилища «живого вещества», показав, что все клетки происходят только от ранее существовавших клеток: «Omnis cellula е cellula» (каждая клетка из клетки). Поскольку клетки представляют собой вполне конкретные объекты, которые легко наблюдать, после всех этих открытий экспериментальное изучение клетки вытеснило теоретические рассуждения о «жизни» и сомнительные научные исследования, основанные на таких расплывчатых концепциях, как концепция «протоплазмы».

В течение последующих ста лет ученые, исследовавшие клетку, подходили к этому объекту с двух совершенно различных позиций. Цитологи при помощи непрерывно совершенствующихся микроскопов продолжали развивать микроскопическую и субмикроскопическую анатомию неповрежденной целостной клетки. Начав с представлений э клетке как о комочке желеобразного вещества, в котором не удавалось различить ничего,

кроме студенистой цитоплазмы, покрывающей ее снаружи оболочки и расположенного в центре ядра, они сумели показать, что клетка представляет собой сложную структуру, дифференцированную на различные органеллы, каждая из которых приспособлена к выполнению той или иной жизненной функции. При помощи электронного микроскопа цитологи начали различать отдельные структуры, участвующие в выполнении этих функций на молекулярном уровне. Благодаря этому в недавнее время исследования цитологов сомкнулись с работами биохимиков, начинавших с безжалостного разрушения нежных структур клетки; изучая химическую активность полученного в результате такого разрушения материала, биохимики сумели расшифровать некоторые из протекающих в клетке биохимических реакций, лежащих в основе жизненных процессов, в том числе процессов создания самого вещества клетки.

Именно происшедшее в настоящее время пересечение этих двух направлений изучения клетки и вызвало необходимость посвятить целый номер журнала «Scientific American» живой клетке. Ныне цитолог пытается объяснить на молекулярном уровне то, что он видит при помощи своих разнообразных микроскопов; таким образом, цитолог становится «молекулярным биологом». Биохимик же превращается в «биохимического цитолога», исследующего в равной мере как структуру, так и биохимическую деятельность клетки. Читатель сможет убедиться, что одни лишь морфологические или одни лишь биохимические методы исследования не дают нам возможности проникнуть в тайны строения и функции клетки. Для того чтобы добиться успеха, необходимо сочетать те и другие методы исследования. Однако понимание явлений жизни, достигнутое благодаря изучению клетки, полностью подтвердило мнение биологов XIX в., утверждавших, что живое вещество имеет клеточное строение, подобно тому как молекулы построены из атомов.

Обсуждение функциональной анатомии живой клетки следует, пожалуй, начать с того, что в природе не существует некой типичной клетки. Нам известно множество разнообразнейших одноклеточных организмов, а клетки мозга или мышечные клетки столь же сильно отличаются друг от друга по своему строению, как и по своим функциям. Однако, несмотря на все свое разнообразие, все они представляют собой клетки - у всех у них имеется клеточная мембрана, цитоплазма, содержащая различные органеллы, и в центре каждой из них имеется ядро. Помимо определенной структуры, все клетки обладают рядом интересных общих функциональных особенностей. Прежде всего все клетки способны к использованию и превращению энергии, в основе чего лежит в конечном счете использование солнечной энергии клетками зеленых растений и превращение ее в энергию химических связей. Различные специализированные клетки способны превращать энергию, заключенную в химических связях, в электрическую и механическую энергию и даже вновь в энергию видимого света. Способность к превращению энергии имеет очень важное значение для всех клеток, так как она дает им возможность сохранять постоянство своей внутренней среды и целостность своей структуры.

Живая клетка отличается от окружающей ее неживой природы тем, что в ней содержатся очень большие и чрезвычайно сложные молекулы. Эти молекулы столь своеобразны, что, встретившись с ними в мире неживого, мы всегда можем быть уверены, что это остатки мертвых клеток. В ранние периоды развития Земли, когда на ней впервые зарождалась жизнь, происходил, по-видимому, спонтанный синтез сложных макромолекул из более мелких молекул. В современных же условиях способность синтезировать большие молекулы из более простых веществ представляет собой одну из главных отличительных особенностей живых клеток.

К числу таких макромолекул принадлежат белки. Помимо того, что белки составляют основную часть «твердого» вещества клетки, многие из них (ферменты) обладают каталитическими свойствами; это означает, что они способны сильно увеличивать скорость химических реакций, протекающих в клетке, в частности скорость реакций, связанных с превращением энергии. Синтез белков из более простых единиц - аминокислот, которых насчитывают 20 с лишним, регулируется дезоксирибонуклеиновой и рибонуклеиновой кислотами (ДНК и РНК); ДНК и РНК представляют собой чуть ли не самые сложные из всех макромолекул клетки. За последние годы и даже месяцы установлено, что ДНК, находящаяся в ядре клетки, направляет синтез РНК, которая содержится как в ядре, так и в цитоплазме. РНК в свою очередь обеспечивает определенную последовательность расположения аминокислот в молекулах белка. Роль ДНК и РНК можно сравнить с ролью архитектора и инженера-строителя, в результате совместных усилий которых из груды кирпича, камня и черепицы вырастает красивый дом.

На той или иной стадии жизни каждая клетка делится: материнская клетка вырастает и дает начало двум дочерним клеткам в результате весьма тонкого процесса, описанного в статье Д. Мэзия. Еще на пороге XX в. биологи понимали, что наиболее важная черта этого процесса заключается в равномерном распределении между дочерними клетками особых телец, содержащихся в ядре материнской клетки; эти тельца были названы хромосомами, так как оказалось, что они окрашиваются определенными красителями. Было высказано предположение, что хромосомы служат носителями наследственности; благодаря точности, с которой происходит их самовоспроизведение и распределение, они передают дочерним клеткам все свойства материнской клетки. Современная биохимия показала, что хромосомы состоят главным образом из ДНК, и одна из важных задач молекулярной биологии заключается в том, чтобы выяснить, каким образом генетическая информация закодирована в структуре этой макромолекулы.

Помимо способности к превращению энергии, биосинтезу и размножению путем самовоспроизведения и деления, клетки высокоорганизованных животных и растений обладают другими особенностями, благодаря которым они оказываются приспособленными к той сложной и согласованной деятельности, какой является жизнь организма. Развитие из оплодотворенного яйца, представляющего собой одну единственную клетку, многоклеточного организма происходит не только в результате клеточного деления, но и в результате дифференцировки дочерних клеток на различные специализированные типы, из которых образуются разные ткани. Во многих случаях после дифференцировки и специализации клетки перестают делиться; существует своего рода антагонизм между дифференцировкой и ростом путем клеточного деления.

У взрослого организма способность к размножению и поддержанию численности вида на определенном уровне зависит от яйцеклетки и сперматозоида. Эти клетки, называемые гаметами, возникают, подобно всем прочим клеткам организма, в процессе дробления оплодотворенного яйца и последующей дифференцировки. Однако во всех тех участках взрослого организма, где постоянно происходит снашивание и разрушение клеток (в коже, кишечнике и т костном мозге, где вырабатываются форменные элементы крови), клеточное деление остается весьма частым событием.

В течение эмбрионального развития у дифференцирующихся клеток одного и того же типа проявляется способность как бы узнавать друг друга. Клетки, принадлежащие к одному и тому же типу и сходные друг с другом, объединяются, образуя ткань, в которую нет доступа клеткам всех остальных типов. В этом взаимном притяжении и отталкивании клеток основная роль принадлежит, по-видимому, клеточной мембране. Эта мембрана представляет собой, кроме того, один из главных клеточных компонентов, с которым связана функция мышечных клеток (обеспечивающих способность организма к движению), нервных клеток (создающих связи, необходимые для согласованной деятельности организма) и сенсорных клеток (воспринимающих раздражения извне и изнутри).

Хотя в природе и не существует клетки, которую можно было бы? считать типичной, нам представляется полезным создать некую ее модель, так сказать «собирательную» клетку, в которой сочетались бы морфологические признаки, выраженные в той или иной мере у всех клеток.

Даже в клеточной мембране толщиной каких-нибудь 100 ангстремов (1 ангстрем равен одной десятимиллионной части миллиметра), которая под обычным микроскопом имеет вид просто пограничной линии, при электронно-микроскопическом исследовании выявляется определенная структура. Правда, мы еще почти ничего не знаем об этой структуре, однако само наличие у клеточной мембраны сложной структуры хорошо согласуется со всем тем, что нам известно относительно ее функциональных свойств. Например, мембраны эритроцитов и нервных клеток способны отличать ионы натрия от ионов калия, хотя эти ионы имеют близкие размеры и одинаковый электрический заряд. Мембрана этих клеток помогает ионам калия проникать в клетку, ионам же натрия она «противится», и это зависит не от одной проницаемости; иными словами, мембрана обладает способностью к «активному переносу ионов». Кроме того, клеточная мембрана механически втягивает в клетку большие молекулы и макроскопические частицы. Электронный микроскоп позволил также проникнуть в тонкую структуру находящихся в цитоплазме органелл, которые в обычном микроскопе имеют вид зернышек. Наиболее важные органеллы - это хлоропласты клеток зеленых растений и митохондрии, встречающиеся в клетках как животных, так и растений. Эти органеллы - «силовые станции» всей жизни на Земле. Их тонкая структура приспособлена к определенной функции: у хлоропластов - к связыванию энергии солнечного света в процессе фотосинтеза, а у митохондрий - к извлечению энергии (заключенной в химических связях поступающих в клетку питательных веществ) в процессе окисления и дыхания. Эти «силовые станции» поставляют энергию, необходимую для различных протекающих в клетке процессов, так сказать, в «удобной расфасовке» - в виде энергии фосфатных связей одного химического соединения, аденозинтрифосфата (АТФ).

Электронный микроскоп позволяет ясно отличать митохондрии с их сложной тонкой структурой от других телец, имеющих примерно такие же размеры, - от лизосом. Как показал де Дюв, в лизосомах содержатся переваривающие ферменты, разрушающие большие молекулы, например молекулы жиров, белков и нуклеиновых кислот, на более мелкие составные части, которые могут окисляться ферментами митохондрий. Мембрана лизосом изолирует заключенные в этих тельцах переваривающие ферменты от остальной цитоплазмы. Разрыв мембраны и освобождение содержащихся в лизосомах ферментов быстро приводит к лизису (растворению) клеток.

В цитоплазме содержится много других включений, которые менее широко распространены в клетках различных типов. Среди них особенный интерес представляют центросомы и кинетосомы. Центросомы можно увидеть в обычный микроскоп только ко времени деления клетки; они играют очень важную роль, образуя полюсы веретена - аппарата, растаскивающего хромосомы по двум дочерним клеткам. Что касается кинетосом, то их можно обнаружить лишь в тех клетках, которые движутся при помощи специальных ресничек или жгутиков; в основании каждой реснички или жгутика лежит кинетосома. Как центросомы, так и кинетосомы способны к самовоспроизведению: каждая пара центросом при делении клетки дает начало другой паре этих телец; всякий раз, когда на поверхности клетки появляется новая ресничка, она получает кинетосому, возникшую в результате самоудвоения одной из уже имевшихся кинетосом. В прошлом некоторые цитологи высказывали мнение, что структура этих двух органелл во многом сходна, несмотря на то, что их функции совершенно различны. Электронно-микроскопические исследования подтвердили это предположение. Каждая органелла состоит из 11 волокон; два из них расположены в центре, а остальные девять - по периферии. Именно так устроены также все реснички и все жгутики. Точное назначение подобного строения неизвестно, однако оно, несомненно, связано с сократимостью ресничек и жгутиков. Возможно, что один и тот же принцип «мономолекулярной мышцы» лежит в основе действия кинетосомы и центросомы, несущих совершенно различные функции.

Электронный микроскоп позволил подтвердить и другое предположение цитологов прошлых лет, а именно предположение о существовании «цитоскелета» - невидимой структуры цитоплазмы. В большей части клеток при помощи электронного микроскопа можно обнаружить сложную систему внутренних мембран, незаметную при наблюдении в обычном микроскопе. Некоторые из этих мембран имеют гладкую поверхность, а у других одна из поверхностей шероховатая из-за покрывающих ее мельчайших гранул. В разных клетках эти мембранные системы развиты в разной степени; у амебы они очень просты, а в специализированных клетках, в которых происходит интенсивный синтез белков (например, в клетках печени или поджелудочной железы), очень сильно разветвлены и отличаются значительной зернистостью.

Специалисты по электронной микроскопии оценивают все эти наблюдения по-разному. Наиболее широкое распространение получила точка зрения К. Портера, предложившего для этой системы мембран название «эндоплазматическая сеть»; по его мнению, по сети канальцев, образуемых мембранами, происходит движение различных веществ от наружной клеточной мембраны к мембране ядра. Некоторые исследователи считают внутреннюю мембрану продолжением наружной; по мнению этих авторов, благодаря глубоким впадинам во внутренней мембране поверхность соприкосновения клетки с омывающей ее жидкостью сильно увеличивается. Если роль мембраны действительно столь важна, то следует ожидать, что в клетке имеется механизм, позволяющий непрерывно создавать новую мембрану. Дж. Палад высказал предположение, что таким механизмом служит загадочный аппарат Гольджи, впервые обнаруженный итальянским цитологом К. Гольджи в конце прошлого века. Электронный микроскоп позволил установить, что аппарат Гольджи состоит из гладкой мембраны, которая нередко служит продолжением эндоплазматической сети.

Природа гранул, покрывающих «внутреннюю» поверхность мембраны, не вызывает никаких сомнений. Особенно хорошо выражены эти гранулы в клетках, которые синтезируют большие количества белка. Как показали лет 20 назад Т. Касперссон и автор настоящей статьи, такие клетки отличаются высоким содержанием РНК. Проведенные недавно исследования позволили установить, что эти гранулы чрезвычайно богаты РНК и в соответствии с этим весьма активны в отношении синтеза белка. Поэтому они получили название рибосом.

Внутренняя граница цитоплазмы образована мембраной, окружающей клеточное ядро. До сих пор еще возникает много разногласий по вопросу о том, какое же строение имеет эта мембрана, которую мы наблюдаем в электронном микроскопе. На вид это двойная пленка, в наружном слое которой имеются кольца или отверстия, открывающиеся в сторону цитоплазмы. Некоторые исследователи считают эти кольца порами, сквозь которые большие молекулы проходят из цитоплазмы в ядро или же из ядра в цитоплазму. Поскольку наружный слой мембраны нередко находится в тесном соприкосновении с эндоплазматической сетью, высказывалось также мнение, что ядерная оболочка участвует в образовании мембран этой сети. Возможно также, что жидкости, протекающие сквозь канальцы эндоплазматической сети, накапливаются в промежутке между двумя слоями ядерной оболочки.

В ядре находятся важнейшие структуры клетки - нити хроматина, в которых заключена вся содержащаяся в клетке ДНК. Когда клетка находится в состоянии «покоя» (т. е. в период роста между двумя делениями), хроматин рассеян по всему ядру. Благодаря этому ДНК приобретает максимальную поверхность соприкосновения с другими веществами ядра, которые, вероятно, служат ей материалом для построения молекул РНК и для самовоспроизведения. В процессе подготовки клетки к делению хроматин собирается и уплотняется, образуя хромосомы, после чего равномерно распределяется между обеими дочерними клетками.

Ядрышки не столь неуловимы, как хроматин; эти шаровидные тельца хорошо видны в ядре при наблюдении в обычном микроскопе. Электронный микроскоп позволяет увидеть, что ядрышко заполнено мелкими гранулами, сходными с рибосомами цитоплазмы. Ядрышки богаты РНК и, по-видимому, представляют собой активные центры синтеза белка и РНК. Чтобы завершить описание функциональной анатомии клетки, отметим, что хроматин и ядрышки плавают в аморфном белкообразном веществе - ядерном соке.

Создание современной картины строения клетки потребовало развития сложнейшей аппаратуры и более совершенных методов исследования. Обычный световой микроскоп продолжает и в наше время оставаться важным орудием. Однако для исследования внутреннего строения клетки при помощи этого микроскопа обычно приходится убивать клетку и окрашивать ее различными красителями, которые избирательно выявляют основные ее структуры. Чтобы увидеть эти структуры в активном состоянии в живой клетке, были созданы различные микроскопы, в том числе фазово-контрастный, интерференционный, поляризационный и флуоресцентный; все эти микроскопы основаны на использовании света. В последнее время главным орудием исследования становится для цитологов электронный микроскоп. Применение электронного микроскопа «осложняется, однако, необходимостью подвергать исследуемые объекты сложным процессам обработки и фиксации, что неизбежно влечет за собой нарушение подлинных картин, связанное с различными искажениями и артефактами. Тем не менее мы делаем успехи и приближаемся к тому, чтобы исследовать при большом увеличении живую клетку.

История развития технического оснащения биохимии не менее замечательна. Создание центрифуг со все возрастающими скоростями вращения позволяет разделять содержимое клетки на все большее и большее число отдельных фракций. Эти фракции подвергаются дальнейшему разделению и подразделению при помощи хроматографии и электрофореза. Классические методы анализа удалось приспособить теперь для исследования количеств и объемов в 1000 раз меньших, чем те, которые удавалось определять ранее. Ученые приобрели возможность измерить интенсивность дыхания нескольких амеб или нескольких яиц морского ежа или же определить содержание в них ферментов. Наконец, радиоавтография- метод, в котором используются радиоактивные индикаторы, - позволяет наблюдать на субклеточном уровне динамические процессы, происходящие в неповрежденной живой клетке.

Все остальные статьи данного сборника посвящены успехам, достигнутым благодаря смыканию этих двух важнейших направлений в исследовании клетки, и дальнейшим перспективам, которые открываются перед биологией. В заключение мне казалось бы полезным показать, каким образом сочетание цитологического и биохимического подходов используется для решения одной проблемы - проблемы роли ядра в жизнедеятельности клетки. Удаление ядра из одноклеточного организма не влечет за собой немедленной гибели цитоплазмы. Если разделить амебу на две половинки, оставив ядро в одной из них, и подвергнуть обе половинки голоданию, то обе они будут жить примерно по две недели; у одноклеточного простейшего - туфельки - можно наблюдать биение ресничек в течение нескольких дней после удаления ядра; безъядерные фрагменты гигантской одноклеточной водоросли ацетабулярии живут в течение нескольких месяцев и даже способны к довольно заметной регенерации. Таким образом, многие из основных жизненных процессов клетки, в том числе (в случае ацетабулярии) процессы роста и дифференцировки, могут происходить при полном отсутствии генов и ДНК. Безъядерные фрагменты ацетабулярии способны, например, синтезировать белки и даже специфичные ферменты, хотя известно, что синтез белка регулируется генами. Однако способность этих фрагментов к синтезу постепенно затухает. На основании этих данных можно заключить, что в ядре под влиянием ДНК образуется какое-то вещество, которое выделяется в цитоплазму, где оно постепенно используется. Из таких экспериментов, проводимых с одновременным использованием цитологических и биохимических методов, вытекает ряд важных выводов.

Во-первых, ядро следует считать главным центром синтеза нуклеиновых кислот (как ДНК, так и РНК). Во-вторых, ядерная РНК (или ее часть) поступает в цитоплазму, где она играет роль посредника, передающего цитоплазме генетическую информацию от ДНК. Наконец, эксперименты показывают, что цитоплазма, и в частности рибосомы, служат главной ареной для синтеза таких специфических белков, как ферменты. Следует добавить, что возможность независимого синтеза РНК в цитоплазме нельзя считать исключенной и что такой синтез можно обнаружить в безъядерных фрагментах ацетабулярий при соответствующих условиях.

Этот краткий очерк современных данных ясно показывает, что клетка представляет собой не только морфологическую, но и физиологическую единицу.

Клетки делятся на прокариотические и эукариотические. Первые - это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, - хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Эукариотическая клетка

Прокариотическая клетка

Строение

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки , Человеческий организм - слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань - это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная - защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная - жировая, хрящевая и костная. Выполняет различные функции.

Мышечная - гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная - нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных - это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, - 220 мм - больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити - хромосомы. Хромосома состоит из двух половин - хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии - это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки - от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол - цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент - цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы - это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма - это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду - гиалоплазму - вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум - это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку !



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии