Отдел мозга отвечающий за координацию. Анатомия мозга

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Как головной и спинной мозг управляют движениями тела? Мозг не только посылает команды мышцам, но и получает по обратной связи сигналы, которые помогают ему согласовывать эти команды

Одно из первых сведений, полученных более ста лет назад, об управлении движением со стороны головного мозга состояло в том, что движения тела могут быть вызваны сигналами, приходящими в спинной мозг из специальной области головного мозга - моторной зоны коры больших полушарий. Движения имеют широкий диапазон - от мышечных координации, требуемых для грубой ручной работы или быстрого перемещения всего тела, до тонких движений пальцев при хирургических операциях, выполняемых под микроскопом.

Поэтому, хотя сознание - это сложный процесс, созданный во многих структурах и сетях - мы, возможно, нашли ключ. Хотя считается, что разные области мозга синхронизируют активность, чтобы соединить разные аспекты опыта, слишком большая синхронизация кажется плохой.

Мозг не может отличить один аспект от другого, останавливая связанный с ним опыт. Анил Сет, изучающий сознание в Университете Суссекса в Великобритании, предупреждает, что мы должны быть осторожными, когда мы интерпретируем поведение только из одного случая практики. У женщины отсутствовала часть ее гиппокампа, который был удален для лечения ее эпилепсии, поэтому она не была «нормальным» мозгом, говорит он.

Три белые «тени» на микрофотографии представляют собой метки, специально созданные, чтобы облегчить исследование важного аспекта связи между головным мозгом и движением, а именно химизма мышечного сокращения, следующего за импульсацией мотонейрона. На микрофотографии показан поперечный срез одной из мышц конечности кошки. «Тени» образованы отдельными мышечными волокнами в одной двигательной единице. Предварительное изучение этой единицы показало, что она относится к «медленной» мышце, т. е. такого рода мышце, которая развивает небольшую силу, но функционирует не утомляясь. Эти три волокна превратились в метки в результате длительной стимуляции мотонейрона, который управляет их сокращениями, что привело к истощению запаса гликогена - особой формы хранения глюкозы, которая служит источником энергии для работы мышцы. При окрашивании среза все мышечные волокна с нормальным содержанием гликогена стали розовыми. На следующих рисунках показаны другие срезы той же мышцы с теми же тремя метками. Они были окрашены, чтобы определить связь между химическими и механическими свойствами мышечных волокон. Микрофотографии получены Р. Берком (R. Burke) и П. Церисом (P. Tsairis) в Национальных институтах здравоохранения.

Тем не менее, он указывает, что интересная вещь в этом исследовании заключается в том, что человек все еще не спал. Обычно, когда мы смотрим на сознательные состояния, мы смотрим на состояние бодрствования против сна или комы против вегетативного состояния или состояния, нечувствительного. «Большинство из этих условий включают изменения в состоянии бодрствования, а также в сознании, но не в этот раз», - говорит Сет. Таким образом, хотя это всего лишь тематическое исследование, потенциально очень информативно, что происходит, когда вы избирательно модулируете только сознание.

Эта выходная активность моторной коры сама является результатом сигналов, поступающих из других пунктов - не только от других областей коры, например тактильной, но и от подкорковых структур мозжечка и базальных ганглиев, которые посылают сигналы в моторную кору еще через одно подкорковое образование - таламус. Основная часть современных исследований мозговых механизмов движения направлена на лучшее понимание того, как сигналы, приходящие от различных корковых и подкорковых структур, объединяются в контроле над конечными выходами из моторной коры к спинному мозгу и оттуда к мышцам. В настоящей статье будет рассмотрен современный уровень наших знаний, которые имеют важное значение по двум причинам. Во-первых, они связаны с фундаментальными проблемами общей организации головного мозга. Во-вторых, они имеют отношение к лечению и, возможно, к предупреждению таких неврологических заболеваний, как болезнь Паркинсона и хорея Гентингтона (две болезни из числа тех, при которых затронуты базальные ганглии), различные проявления инсульта, рассеянного склероза, а также многих других нарушений, возникающих при повреждении мозжечка.

«Фрэнсис был бы рад невежественному», - говорит Кох, которому жена Крика говорит, что Крик на смертном одре галлюцинировал предмет с Кохом о клаустуме и его отношении к сознанию. В конце концов, если мы знаем, как создается сознание и какие части мозга задействованы, тогда мы можем узнать, кто владеет, а кто нет, - сказал Кох. У роботов это есть? Как насчет кошек, собак или червей? Это исследование невероятно интригует, но это кирпич в большом здании сознания, которое мы пытаемся построить.

«Вся наша жизнь, по крайней мере, до получения однородной формы, это не только куча привычек.» Более 40% нашей повседневной деятельности, на самом деле не наше решение, но только привычки. Большинство наших решений, которые мы делаем каждый день, могут казаться результатом хорошо продуманных решений, но это не так. И хотя они имеют очень мало смысла в себе, они сильно повлияли на наше здоровье, производительность, финансовое положение, чувство счастья с течением времени. Таможня может быть изменена, если мы поймем, как они работают.

Каковы элементарные условия для выполнения движения? Первое - это мышца, второе - это сигнализирующая система, которая вызывает упорядоченное сокращение мышцы. Если начать с мышц, то надо сказать, что не все они работают одинаково. Рассмотрим мышцы глаза и руки у человека. Глазные мышцы должны работать с высокой скоростью и большой точностью, быстро ориентируя глазное яблоко в пределах нескольких дуговых минут. В то же время глазной мышце не приходится справляться с такими внешними задачами, как поднимание груза. Тонкое управление, требуемое при движении глаза, требует высокого иннервационного индекса - отношения числа нейронов, аксоны которых оканчиваются на наружной мембране мышечных клеток, к числу мышечных клеток.

Привычки - это решения, которые мы принимаем сначала очень тщательно, но затем мы перестаем думать о них и продолжать их каждый день, не осознавая этого. В какой-то момент мы сознательно решили, сколько мы будем есть, что мы будем делать в первую очередь утром и т.д. но позже мы перестали принимать решения по этому поводу, и наше поведение стало автоматическим. Это естественное следствие нашей неврологии. И если мы поймем, как это происходит, мы можем переформатировать наши поведенческие модели по мере необходимости.

Ученые говорят, что привычки создаются, потому что наш мозг все еще ищет способы сэкономить усилия. Мозг попытается превратить почти любую деятельность в привычку, потому что привычки позволяют мозгу расслабляться чаще. Эффективный мозг позволяет нам перестать думать о повторяющихся основных действиях, спасая нас от умственной энергии для других действий.

Для глазной мышцы иннервационный индекс составляет 1:3; это значит, что аксонные окончания одного мотонейрона выделяют свой медиатор не более чем на три отдельные мышечные клетки. (Мотонейрон - это такой нейрон, тело которого лежит в спинном мозгу, а аксон оканчивается на мембране мышечной клетки.) По-иному обстоит дело с мышцами руки: аксонные окончания одного мотонейрона, например иннервирующего бицепс, могут действовать своим медиатором на сотни мышечных волокон, и поэтому у такой мышцы иннервационный индекс составляет всего 1:100. В результате действие одной двигательной единицы мышцы конечности - одно быстрое сокращение (twitch), возникающее под влиянием одного импульса, вызывающего выделение медиатора из окончаний одного мотонейрона, - соответственно оказывается грубым.

Трехступенчатый цикл - стимул, рутинный ответ, вознаграждение - автоматизирует с течением времени. Когда образуется привычка, мозг перестает принимать участие в принятии решений. Привычки остаются закодированными в структурах нашего мозга, скрываясь в правильных стимулах и вознаграждениях. Нам не нужно вспоминать опыт, который создал наши привычки, но как только они укрыты в наших мозгах, они влияют на наше поведение - часто не замечая этого. В связи с деятельностью таможенных и мозга они чаще всего связаны так.

Базальные ганглии, овальные пучки клеток размером с мяч для гольфа, который расположен недалеко от центра черепа. Жажда - вот что заставляет привычную привычку и что делает ее такой сильной. Однако многочисленные исследования показали, что стимулов и вознаграждений в одиночку недостаточно для выживания. Стимул, который начинает рутинные действия, должен также начинать тягу после награды.

Двигательные единицы мышц различаются также по тому, насколько они подвержены утомлению. На одном конце шкалы лежат двигательные единицы медленного сокращения, способные длительно функционировать без утомления. Такие единицы могут быть активными в течение длительного времени, но развивают сравнительно небольшое мышечное напряжение. На другом конце шкалы находятся двигательные единицы быстрого сокращения; они могут создавать высокие пики мышечного напряжения, но быстро утомляются. Такие единицы обычно иннервируются мотонейронами с диаметром аксонов и скоростью проведения нервного импульса выше средних.

Если вы хотите изменить свою привычку, вам нужно сохранить старый стимул и вознаграждение, но вставьте новое альтернативное рутинное действие. Используя тот же стимул и ту же награду, новая процедура может быть зациклена. Чтобы сохранить смену привычек, мы должны верить, что изменение возможно.

Исследования показали, что изменение привычки в большинстве случаев очень эффективно, пока стресс повседневного стресса не достиг определенного предела. Во времена кризиса стажеры «переключаются» на старые, преодолевают подпрограммы. Как получается, что, когда смена привычки настолько эффективна, разве она не работает так, как есть, в критические моменты? Сколько вылечит алкоголик, который воздерживался в течение многих лет, снова пьёт в утомительной ситуации? - Изменение привычки становится постоянной новой привычкой только в сопровождении чего-то другого.

В одной и той же мышце содержатся волокна и быстрых и медленных двигательных единиц. В 1968 г. шведские исследователи Э. Кугельберг (Е. Kugelberg) и Л. Эдстром (L. Edstrom) нашли способ определять, какие отдельные моторные волокна относятся к данной двигательной единице. Длительной стимуляцией аксона одного мотонейрона эти исследователи вызывали продолжительное сокращение мышечных волокон одной двигательной единицы. Сокращение приводило к истощению в отдельных мышечных волокнах запаса гликогена, который является источником энергии. При специальном окрашивании ткани на гликоген волокна истощенной двигательной единицы принимали вид белых «теней», рассеянных среди розовых волокон с нормальным запасом гликогена.

Ингредиентом является вера, которая делает измененный принцип живым принципом. Когда люди научились чему-то верить, эта способность начала распространяться на другие части жизни, пока они не верят, что могут измениться. Легче верить в середину сообщества, которое может поверить в изменения.

Часть вторая: привычки успешных организаций

Чтобы измениться, важно определить и сосредоточиться на так называемых ключевых привычках. Некоторые привычки имеют право инициировать цепную реакцию, которая изменяет другие привычки, поскольку она постепенно распространяется по всей организации. «Основные привычки» являются те, которые, когда вы начинаете изменять, распространять и трансформировать другие виды поведения, чтобы помочь созданию новых структур других привычек, которые укоренились, и создать условия, в которых изменение становится заразным.

Такой гистохимический эффект представляет собой демонстрацию биохимической реакции в живой микроанатомической структуре. Так, применив подход Кугельберга и Эдстрома, Р. Берк (R. Burke) с сотрудниками из Национальных институтов здравоохранения показал с помощью гистохимического окрашивания, что «быстрые» мышечные единицы, используя в качестве источника энергии аденозинтрифосфат (АТФ), расщепляют его ферментативным путем быстрее, чем это происходит в «медленных» двигательных единицах. Это ферментативное расщепление считается одним из важных факторов, определяющих присущую мышце скорость сокращения. Таким образом, гистохимические данные помогают объяснить различия в скорости сокращения. Равным образом, гистохимическое исследование других ферментов - тех, которые расщепляют сахара и жиры, - помогает объяснить весьма существенные различия в утомляемости между двумя видами двигательных единиц.

Поиск этих ключевых привычек - это тщательный анализ контекста, поиск реальных причин. У людей есть привычки, у групп есть подпрограммы. Процедуры являются эквивалентом привычек в организациях. Лучше всего сосредоточиться на крошечных моментах успеха, сделать их умственным стартером, сделать рутину из них. Эти подпрограммы действительно не имеют отношения к основной деятельности организации, это настройка успеха в целом, т.е. достижение так называемой «маленькой победы», которая затрагивает все остальное.

Внутри организации необходимо поддерживать и создавать среду для «небольших побед». Культура организации основана на ключевых привычках. Основные обычаи - культура - ценности - сила. Основные обычаи меняют нас, создавая культуры, которые создают ценности, которые мы легко можем забыть в сложных ситуациях.

Каково значение этих противоположных свойств двигательных единиц для организации движения? Посмотрим, как двигательные единицы мышцы последовательно «вовлекаются» в процесс движения. В общем мышечное напряжение регулируется двумя путями. Первый состоит в контроле над числом двигательных единиц, вовлекаемых в активность. Второй - в регуляции частоты импульсации вовлеченных единиц. Первыми вовлекаются единицы медленного сокращения, не склонные к утомлению и развивающие сравнительно слабое напряжение. Последними вовлекаются двигательные единицы быстрого сокращения, т. е. те, которые дают высокие пики напряжения, но быстро утомляются.

Если есть воля умения, почему это не каждый день столь же силен, как и мы, хотя мы приобретаем это умение? - Воля - это не просто умение. Он работает как мускул, который устает, когда он подвергается стрессу, поэтому меньше энергии остается для других вещей. Поэтому, если нам приходится каждый день преодолевать различные виды деятельности, нам, вероятно, не нужно идти на работу на ночь. Но можно ли использовать эти «свободные мускулы», как бицепс-гантель? - Да, создание возможностей саморегулирования помогает достичь не только поставленной цели, но и положительно влияет на другие сферы жизни.

Второй срез той же мышцы был окрашен для определения относительной способности мышечных белков расщеплять аденозинтрифосфат (АТФ). Темная окраска свидетельствует о более высокой расщепляющей активности. Три волокна-метки очень слабо окрашены (схема справа); такая низкая активность характерна для медленных мышечных волокон.

Поэтому так важно писать ребенка на фортепиано или заниматься спортом. Пятилетний мальчик, который способен практиковать час или пробежать в течение десяти минут за мячом, становится шестилетним ребенком, который начинает с домашней работы вовремя. Самодисциплина как корпоративный обычай. У большинства сотрудников нет более серьезных проблем с хорошей работой. Проблема может возникнуть при воздействии неожиданного напряжения или неопределенности. Поэтому хорошо создавать подпрограммы - бесплатные упражнения, четкие инструкции о том, как бороться с критическими моментами, т.е. обучать сотрудников обучением свободным циклам привычки работать с трудностями.

Третий срез окрашен, чтобы показать способность мышечных белков расщеплять АТФ после их предварительной обработки кислотой. Обратное соотношение интенсивности окраски по сравнению со вторым срезом дает дальнейшие сведения о химизме мышечного волокна.

Четвертый срез был окрашен, чтобы показать относительную способность мышечных волокон к окислительному метаболизму, определяемому по наличию ключевого фермента в митохондриях клетки. Три волокна медленной двигательной единицы (см. схему) находятся среди интенсивно окрашенных волокон; картина согласуется с представлением о меньшей утомляемости таких двигательных единиц.

Сила воли зависит от чувства независимости. Люди хотят сделать свой выбор. Когда вы просите людей сделать что-то, что требует самоконтроля, если они считают, что у них есть выбор или что они помогают кому-то, это менее требовательно. Если они чувствуют, что у них нет независимости, они только делают приказы, их свободные мускулы устают намного быстрее. Таким образом, если организации дают рабочим чувство власти, они могут радикально увеличить количество энергии и концентрации, в которых они участвуют.

Мир на поле боя внутри организации. Большинство экономистов привыкли видеть общества как идиллические места, где каждый человек стремится к общей цели зарабатывать как можно больше денег. Но компании не очень счастливые семьи, где они все хорошо играют вместе. В большинстве случаев это доминирование лидеров, которые борются за власть и признание в скрытых стычках, чтобы помочь им выглядеть лучше в глазах других. Разделы конкурируют за ресурсы и подчиняют друг друга. Тем не менее, большинство компаний были счастливы годами.

Э. Хеннемен (Е. Henneman) из Гарвардской медицинской школы внес важный вклад в общее понимание порядка вовлечения в активность отдельных двигательных единиц. Он отметил, что напряжение мелких мышц создается и точно контролируется избирательной мобилизацией разного числа мелких двигательных единиц. Между мелкими и более крупными единицами существует немалая разница. Например, самая крупная двигательная единица в икроножной мышце человека развивает напряжение в 200 раз больше, чем самая мелкая. Когда требуется общее усиление работы мышц, то, как установил Хеннемен, в активность вовлекаются более крупные двигательные единицы, что создает большие элементарные приросты напряжения. Это означает, что по мере увеличения общего напряжения оно создается меньшим числом дополнительных единиц. Разумеется, когда обстоятельства требуют резкого повышения общего напряжения мышцы, двигательные единицы вовлекаются не последовательно, а активируются практически одновременно.

У них есть подпрограммы, которые создают перемирие, которое позволяет каждому отвлечься от взаимного соперничества в течение периода времени, достаточного для того, чтобы рабочий день прошел гладко. Например, продавец знает, что он может повысить премию, предоставив клиентам справедливую скидку. Но он также знает, что если бы у всех были большие скидки, у компании не было бы денег, чтобы заплатить. Таким образом, будет создана следующая процедура: все поставщики собираются вместе, чтобы договориться о том, сколько скидок они предлагают для защиты своих доходов, и получать каждый бонус в конце года.

Так обстоит дело с разными видами мышц и их двигательными единицами. Теперь посмотрим, что заставляет эти единицы сокращаться. Мышечные сокращения совершаются благодаря тому, что медиатор ацетилхолин, который выделяется в нервно-мышечном соединении при каждом импульсе, исходящем от мотонейрона, способен вызвать импульс в мышечной клетке. Блокирование передачи на уровне соединения, например при помощи алкалоида кураре, препятствует мышечному сокращению. Такую блокаду воспроизводили и у людей. Испытуемым вводили кураре в условиях искусственного дыхания. Во время паралича, вызванного кураре, выделение ацетилхолина аксонами мотонейронов продолжается, но блокируется взаимодействие медиатора с соответствующими рецепторами на мембране мышечной клетки; в результате мышцы перестают реагировать на команды, поступающие от коры больших полушарий. Испытуемые продолжали мыслить и чувствовать, но внешние проявления деятельности мозга исчезали. Речь, выражение лица, способность направлять взор - все эти формы поведения зависят от сокращения мышц.

Если деятельность организации допускает очевидное согласование и разделение власти, тогда невозможно создать ответственность за перекрытие, цели, стоящие перед отделами. Это проблема в кризисные моменты, которые противоположны нормальному функционированию. Кризисы настолько ценны, что иногда лучше создавать ощущение катастрофы, чем позволять вещам идти. Кроме того, в кризисных ситуациях привычки организации достаточно пластичны, чтобы перераспределить ответственность и установить более равномерное разделение власти.

Поэтому мудрые лидеры ищут кризисные моменты или вызывают впечатления от кризиса, поощряя чувство, что что-то должно измениться, когда каждый готов изменить форму, которую они ежедневно хранят. Торговые привычки меняются чаще, когда люди переживают период перемен. Клиенты, которые испытывают значительные изменения в жизни, часто не понимают и не заботятся о том, что их привычки к покупкам изменились. Но продавцы это заметили, и они очень заинтересованы в этом. И каковы большие изменения в жизни, чем рождение ребенка?

Головной мозг макака, вид сверху. Помечены разные участки моторной коры больших полушарий. Окрашенная полоса обозначает ту часть мозга, которая удалена, чтобы показать подкорковые структуры на соседнем рисунке.

Многие современные представления о механизмах движения возникли на основе трудов английского физиолога Шеррингтона, который в начале века занимался изучением функции мотонейронов в некоторых рефлекторных формах двигательной активности, таких, как чесание и ходьба. Сигналы, идущие от многих различных областей головного мозга, часто воздействуют на несколько одних и тех же мотонейронов спинного мозга. Установив этот факт, Шеррингтон охарактеризовал мотонейроны как «общий конечный путь», связывающий головной мозг с мышечным актом. Он изучал движение мышц у животных после перерезки спинного мозга, т.е. после нарушения связи мотонейронов с головным мозгом.

Головной мозг макака, вид сзади. Сектор, величиной 90°, удален, чтобы показать некоторые детали подкорковых структур. Цветная пунктирная линия окружает базальные ганглии левого полушария - части стриатума,скорлупу и хвостатое ядро, а также смежный с ними бледный шар. Ближе к средней линии лежит левый таламус, а по обе стороны от средней линии - правая половина мозжечка, так что видны его внутренние части - зубчатое ядро и ядро шатра. Моторная область коры больших полушарий (окрашена) - филогенетически более поздняя структура по сравнению с базальными ганглиями и мозжечком. Проводимые в настоящее время исследования показывают, что импульсация нейронов моторной коры вызывается сигналами, приходящими в нее через таламус от филогенетически более древних подкорковых структур.

Шеррингтон установил, что через несколько месяцев после такой перерезки у собаки удавались вызвать чесательный рефлекс механическими стимулами - щекотанием кожи или легким потягиванием за волосок где-нибудь на обширной поверхности спины. Описывая эти реакции, он указал, что такие движения «происходили без видимого нарушения направления или ритма». Работа Шеррингтона по чесательному рефлексу привела к современной концепции о «запускаемом движении», основанной на представлении о «центральной программе» с участием спинального генератора ритма. Вскоре после Шеррингтона другой английский физиолог Г. Браун (G. Brown) показал, что у собак, лишенных связей между головным и спинным мозгом, возможны также ритмические движения конечностей, подобные тем, какие происходят при ходьбе. Очевидно, для ходьбы, так же как и для чесания, существуют спинальные генераторы ритма.

Многие теперешние исследования по нейрофизиологии локомоции направлены на выяснение взаимодействия между тем, что можно назвать центральными программами, исходящими от головного мозга, и сенсорными обратными связями. Действительно, работа Шеррингтона особенно касалась того, какими способами активность мотонейронов регулируется сенсорными обратными связями. Он ввел термин «проприоцепция» для обозначения сенсорных входов, которые возникают в процессе вызываемых из центра движений, когда «стимулы, действующие на рецепторы, возникают в самом организме». Шеррингтон избрал приставку «проприо» (от латинского «proprius - «свой собственный»), так как он считал, что главная функция проприоцепторов состоит в том, чтобы по механизму обратной связи давать информацию о собственных движениях организма.

Мышечные проприоцепторы делятся на два вида. Один вид реагирует на удлинение, другой - на напряжение. Мышечные рецепторы длины посылают волокна в спинной мозг и образуют там синапсы на мотонейронах, которые оканчиваются на тех же мышцах. Поэтому любое усиление активности рецептора длины, происходящее при удлинении мышцы, активирует мотонейроны удлиненной мышцы. А это вызывает ее сокращение, противодействующее удлинению.

Рецепторы напряжения - второй вид проприоцепторов - чувствительны не к удлинению, а к силе; их активация ведет к торможению связанных с ними мотонейронов. Таким образом, когда прирост напряжения мышцы активирует эти рецепторы, в ответ они действуют на связанные с ними мотонейроны, и это приводит к снижению силы. Поэтому как рецепторы длины, так и рецепторы напряжения можно считать тем, что инженер назвал бы системой управления с помощью отрицательной обратной связи. Данная система поддерживает свою стабильность, противодействуя изменениям длины и напряжения мышцы.

Работа такого сервомеханизма с отрицательной обратной связью станет яснее, если рассмотреть в качестве примера какую-либо такую систему в действии. Представим себе человека, который пытается без наличия внешних помех удерживать свою руку неподвижно вытянутой в сторону. Разумеется, рука при этом непроизвольно слегка колеблется, особенно когда устанет. Например, случайное невольное ослабление напряжения в мышцах, сопротивляющихся силе тяжести, приведет к удлинению этих мышц. А вследствие этого усилится активность одних проприоцепторов - рецепторов длины - и в то же время (вследствие снижения напряжения в мышце) уменьшится активность других проприоцепторов - рецепторов напряжения.

Подопытные обезьяны оказались способными обучаться точным мышечным реакциям на стимулы. В этом опыте экспериментатор зажигал одну из девяти ламп в верхнем ряду панели. Поворотом рукоятки обезьяна могла перемещать верхнюю лампу влево или вправо и получала вознаграждение, когда обе лампы оказывались на одной линии. Микроэлектрод, вживленный в область моторной коры, связанную с точными манипуляциями, регистрировал активность клеток, участвующих в мышечной реакции. Даже незначительное произвольное движение сопровождалось резким усилением активности моторной коры; доля разряжающихся клеток головного мозга была гораздо больше доли активных мотонейронов в спинном мозгу.

Несмотря на то что эти изменения идут в противоположных направлениях, их центральные эффекты не вычитаются один из другого, а суммируются: усиленная импульсация рецепторов длины возбуждает мотонейроны, действующие на мышцы, а ослабление импульсации рецепторов напряжения снимает торможение с тех же самых нейронов. Это синергическое действие двух видов проприоцепторов вступает в силу, когда изменения длины мышцы происходят вследствие непроизвольных изменений в ее напряжении, вызываемых внутренними причинами, но оно не возникнет, если изменения длины и напряжения произойдут вследствие приложения или удаления внешней силы. Например, удлинение мышцы, вызванное увеличением внешней нагрузки, приводит к усилению активности рецептора длины, связанному не с понижением, а с повышением активности рецепторов напряжения. Создавая термин «проприоцептор», Шеррингтон привлек внимание к существенным различиям в нейронной организации, лежащей в основе активного и пассивного движений. В данном контексте «активные» означает собственные движения испытуемого, а «пассивные» - перемещения, производимые внешними силами.

Опыт с «подготовкой к движению» требовал дополнительного обучения обезьян. Их приучали удерживать рукоятку в фиксированном «нейтральном» положении и быть готовыми толкнуть ее вперед через некоторое неопределенное время после вспыхивания зеленого светового сигнала (А) или притянуть назад через некоторое время после вспыхивания красного сигнала (Б). Активность одного нейрона в моторной коре регистрировалась в течение одной секунды до и после сигнальных вспышек; его импульсы записывались в виде горизонтальных рядов точек, где каждый ряд соответствует одному предъявлению стимула. Как показывают эти растровые записи, подготовка к толканию рукоятки вперед вызывала усиление нейронной активности, а подготовка к притягиванию ее вызывала ослабление активности.

Концепция Шеррингтона о связи между рецепторами длины в мышце и движением вообще получила яркое воплощение, когда шведский физиолог Л. Лекселл (L. Leksell) обнаружил, какую роль играют специальные нейроны, называемые гамма-мотонейронами. В отличие от обычных, или альфа-мотонейронов, которые действуют на мышечные волокна, производящие мощное сокращение, гамма-мотонейроны действуют на особые мелкие мышечные волокна, которые регулируют чувствительность рецепторов длины. Следовательно, мотонейроны также бывают двух видов. Один вид действует на мышцы, производящие движения тела (альфа), а второй служит для оптимизации работы рецепторов длины (гамма).

Итак, разные виды мышц, разные виды мотонейронов и связанные с ними системы управления образуют элементарные компоненты механизмов, осуществляющих произвольные и рефлекторные движения. Соотношения между этими компонентами можно изучать в лаборатории на самых разнообразных животных. Например, многие исследования управления движением производятся теперь на моллюсках, а также на членистоногих - насекомых и ракообразных. Простота нервной системы у этих беспозвоночных представляет для исследователя заметные выгоды. Однако эти животные лишены коры большого мозга и связанных с ней структур. Для того чтобы узнать, как головной мозг посылает сигналы мотонейронам и таким образом управляет движениями человека, нужны данные, получаемые на животных, которые обладают не только корой большого мозга, но и ее специализированным отделом - моторной корой, управляющей движением.

Моторная кора была открыта в 1870 г., когда обнаружили, что электрическим раздражением коры большого мозга можно вызвать движения тела. Опыты с такой стимуляцией подтвердили вывод, к которому уже до этого пришел английский невропатолог Дж. Джексон (J. Jackson) на основании клинических наблюдений. Он заметил, что раздражающий очаг повреждения в коре одного полушария большого мозга может вызывать эпилептические движения противоположной стороны тела. Результаты первых опытов по стимуляции, произведенных на собаках, были подтверждены в 1873 г. английским невропатологом Д. Ферье (D. Ferrier) на обезьянах.

Эти исследования моторной коры оказали большое влияние на неврологическое мышление. Чтобы оценить это полностью, надо учесть, что до 1870 г. думали, будто кора больших полушарий служит только для мышления. Джексон выразил тогдашнее общее мнение в следующих словах: «Идея о том, что большие полушария служат для движения, видимо, встречает непреодолимые возражения... Причина этого, как я думаю, лежит в том, что по существующему представлению, извилины [коры] существуют не для движений, а для мыслей».

Следующий шаг был сделан в 1874 г. Он состоял в открытии особой группы гигантских нейронов, которые образуют проводящий путь между моторной корой и спинным мозгом. В этом году русский анатом В. Бец обнаружил в двигательной коре обезьяны и человека необычайно крупные нейроны. Теперь их называют клетками Беца. Было установлено, что аксоны этих клеток спускаются по головному мозгу и образуют прямые связи со спинномозговыми мотонейронами, в частности с нейронами, управляющими теми мышцами, которые служат человеку для точных движений пальцев и речи. Дальнейшее исследование показало, что, казалось бы, непропорционально большая часть моторной коры управляет очень малой долей всей мускулатуры человеческого тела; это наглядно показано на знаменитых «гомункулусах» - картах моторной коры, составленных У. Пенфилдом (W. Penfield) и его сотрудниками из Монреальского неврологического института. Теперь найдены некоторые прямые связи между нейронами моторной коры и мотонейронами грудного отдела спинного мозга, где множество мотонейронов приводит в действие межреберные дыхательные мышцы.

На первый взгляд кажется странным, что нейроны моторной коры, управляющие главным образом точными движениями, оканчиваются на мотонейронах, которые контролируют такое автоматическое и примитивное действие, как дыхание. Но, как указывает английский физиолог Ч. Филиппе (Ch. Phillips), эти связи головного мозга со спинным, вероятно, имеют отношение не к дыханию, а к использованию дыхательных мышц в таких искусных актах, как речь и пение. Таким образом, проекция от моторной коры создает новую регуляцию мышц, предназначенных для старых рефлекторных актов. Как установил сто лет назад Джексон, сама по себе утрата кортико-спинальных связей не парализует мышцы, она препятствует использованию их в некоторых движениях. В частности, разрушение кортико-спинальных путей к грудным мотонейронам не сказывается на использовании дыхательных мышц для дыхания, хотя эти мышцы становятся непригодными для речи.

За последнее десятилетие многое стало известно о контроле над произвольным движением со стороны моторной коры. Новые данные получены в значительной степени благодаря хитроумным методикам, позволяющим вводить микроэлектроды в головной мозг подопытного животного (обычно обезьяны), способного выполнять искусные движения. Пользуясь этими методиками, мы с К. Фроммом (С. Fromm) из Дюссельдорфского университета провели в Национальном институте охраны психического здоровья исследование свойств двигательной коры, лежащих в основе ее решающей роли в точном управлении движениями кисти. Это того же рода точное управление, какое дает возможность хирургу, глядя в микроскоп, передвигать хирургический инструмент с точностью до малых долей миллиметра.

Нам с Фроммом казалось, что если точные мелкие движения управляются выходными сигналами из моторной коры, то тогда ее нейроны должны сильно модулироваться даже мельчайшими флуктуациями мышечной активности. Кроме того, точное управление кистью очень зависит от сенсорной обратной связи, и поэтому мы склонялись к той точке зрения, что активность моторной коры при точно контролируемых движениях кисти должна быть под непрерывным контролем отрицательной обратной связи по замкнутой петле.

Опыт со «стартом», продолжение опыта с подготовкой к движению, имел цель рассмотреть соотношение между произвольными и рефлекторными реакциями. «Стартовый сигнал», производимое мотором перемещение рукоятки из ее нейтрального положения, возникал через одну-пять секунд после включения светового сигнала к подготовке. Активность нейрона моторной коры регистрировали в течение секунды до и после стартового сигнала. Вызывало ли движение рукоятки реакцию толкания (А) или же притягивания к себе (Б), немедленная реакция обезьяны была чисто рефлекторной, о чем на растровых записях говорит усиление нейронной активности сразу же после стимула (через 0,5 секунды). Через 40 миллисекунд этот рефлекторный ответ сменялся произвольным «молчанием» нейрона, связанным с подготовкой к притягиванию рукоятки (белый уча» сток на нижнем растре). После короткого рефлекторного ответа и более продолжительной произвольной реакции (толкания), видных на верхнем растре, животное возвращало рукоятку в нейтральное положение перед следующей пробой; для этого нужно было потянуть ее, что создавало зону молчания, которая видна на верхнем растре (с правой стороны). Точно так же толкание рукоятки для возвращения ее в нейтральное положение вызывало возобновление нейронной активности, видимое на нижнем растре.

Для проверки наших предположений мы начали с того, что обучали обезьян точно передвигать рукоятку прибора. Вращение рукоятки управляло панелью со световыми сигналами; за точные движения обезьяна получала вознаграждение. При каждом тесте регистрировалась импульсация клеток Беца в моторной коре животного. Мы установили, что малейшее перемещение рукоятки сопровождалось поразительным усилением активности этих клеток. Так, доля нейронов моторной коры, которые разряжались при управлении этими тонкими движениями, была гораздо больше доли участвующих в них спинальных мотонейронов.

Была отмечена еще одна особенность в основе той роли, какую играет моторная кора в управлении точными движениями. Это система отрицательной обратной связи, автоматически регулирующая выходную активность моторной коры. Система была сосредоточена преимущественно на тех корковых нейронах, которые контролируют самые точные мелкие движения. Анатомические пути возврата в двигательную кору в системе отрицательной обратной связи детально еще не прослежены. Во всяком случае, одним источником сигналов является соматосенсорная область коры, лежащая непосредственно позади моторной и соединенная с ней множеством связей. Участки соматосенсорной коры, получающие сигналы от кисти, очевидно передают сигналы в моторную кору, замыкая петлю (хотя, вероятно, не единственную) в этой системе обратной связи.

Осуществляемый моторной корой контроль, о котором шла речь выше, имеет решающее значение для возникновения и стабилизации самых точных движений человека. Что происходит, когда человек хочет совершить движение, которое направлено против нормальной рефлекторной реакции? Для исследования этого вопроса мы с Дз. Тандзи (J. Tanji) из Университета Хоккайдо изучали активность нейронов двигательной коры у обезьян, которые были обучены реагировать на непроизвольное движение своей руки. Это обучение иногда требовало мышечной реакции, полностью противоположной нормальному рефлекторному движению. Воспользуемся аналогией с человеком и представим себе испытуемого, который стоит прямо. Он получил инструкцию: когда экспериментатор толкает его, он должен наклониться вперед, не переставляя ног. Испытуемый сначала подготовится к движению вперед, а затем будет ждать толчка. Если толчок последует сзади, то для сохранения равновесия испытуемый рефлекторно отогнется назад. Для осуществления центрально запрограммированного движения, направленного вперед в соответствии с инструкцией, он должен теперь выйти из способа реагирования по замкнутой петле, который сохраняет ему равновесие, и перейти к реакции по открытой петле, которая приведет к тому, что он качнется вперед (в данном случае упадет в сетку или на руки к тому, кто стоит наготове, чтобы поймать его).

Мы с Тандзи обучали обезьян отвечать на такую же последовательность событий. Животные начинали с того, что точно устанавливали рукоятку и удерживали ее в неподвижности в течение нескольких секунд. Во время этого короткого периода выход сигналов из их моторной коры к мышцам руки регулировался отрицательной обратной связью по замкнутой петле. Затем включалась цветная лампа. Ее цвет показывал обезьяне, как реагировать на предстоящее перемещение рукоятки извне. Если свет был красный, обезьяна должна была тянуть рукоятку назад, если зеленый - толкать вперед. Обезьяны получали вознаграждение за правильные ответы на движения рукояток после получения обоих сигналов. Подготовка к реакции на эти сигналы занимала около 200 миллисекунд.

Регистрируя импульсацию нейронов моторной коры, мы отметили, что после подготовки к движению животному нужно было всего 40 миллисекунд, чтобы правильно реагировать на движения рукоятки. В коротком интервале, следующем за движением, корковый контроль резко переходил от обратной связи по замкнутой петле (которая рефлекторно обеспечивает устойчивость позы) к связи по открытой петле, которая была нужна, чтобы совершить запрограммированное движение.

Итак, соматосенсорная область коры больших полушарий выполняет функцию передачи сигналов, контролирующих выходную активность моторной коры по принципу замкнутой петли. Но соматосенсорная область не посылает тех сигналов, которые лежат в основе запрограммированных движений, осуществляемых по принципу открытой петли, несмотря на (а не вследствие) рефлекторные эффекты соматосенсорной входной активности. Сигналы, связанные с запрограммированными движениями, приходят в двигательную кору из подкорковых структур, в особенности из мозжечка через таламус. П. Стрик (P. Strick) из Национальных институтов здравоохранения поставил опыты, которые показали, что в центрально запрограммированном управлении по открытой петле участвует путь, идущий от мозжечка через таламус в кору. Проводя опыты в основном по тому же плану, что и мы с Тандзи, Стрик регистрировал активность отдельных нейронов в определенных структурах мозжечка.

Он обучал своих обезьян двигать рукой в ответ на поданный знак, состоявший в перемещении руки посредством производимого извне передвижения рукоятки, которую держала обезьяна. Стрик обнаружил, что если предварительно у обезьян при помощи системы красных и зеленых сигналов было запрограммировано перемещение рукоятки в том или другом направлении, то эта программа оказывала сильное влияние па реакции определенных, так называемых зубчатых нейронов мозжечка: эти нейроны разряжались в пределах 30 миллисекунд после того, как был подан знак в виде перемещения руки. Тем самым у активности зубчатого нейрона было 10 миллисекунд на то, чтобы пройти через таламус и вызвать, центрально запрограммированную активность моторной коры (проявляющуюся через 40 миллисекунд после подачи знака).

Проводящие пути между некоторыми областями коры больших полушарий и определенными подкорковыми структурами показаны на схеме продольного разреза большого мозга обезьяны. Тонкими стрелками обозначены входы в базальные ганглии (структуры внутри черных границ), которые проводят разнообразную информацию от коры больших полушарий. Один из компонентов, стриатум, является главным связующим звеном между ассоциативными областями коры и моторной областью. Путь, выходящий из стриатума, проходит к разделенному на две части бледному шару (толстая стрелка); это образование в свою очередь посылает связи в другую подкорковую структуру - таламус, в особенности к двум его ядрам: ventralis lateralis и ventralis anterior (толстая и менее толстая стрелки). Пути, выходящие из таламуса, идут главным образом в премоторную область коры (толстая стрелка); дополнительные пути (менее толстая стрелка) направляются в моторную кору, откуда сигналы идут к мотонейронам спинного мозга (пунктирная стрелка). Подкорковые входы играют важную роль в центральном программировании движений.

Факты, полученные Стриком, согласуются с данными У. Тэтча мл. (W. Thatch, Jr.) из Вашингтонского университета. Работая в Национальном институте охраны психического здоровья, Тэтч показал, что импульсация нейронов мозжечка намного опережала мышечную активность у обезьяны, обученной отвечать на световой стимул. Роль сигналов, идущих от мозжечка, в генерации активности моторной коры была также экспериментально показана В. Бруксом (V. Brooks) с сотрудниками из Университета Западного Онтарио. Они искусственно понижали температуру мозжечка у обезьян, а затем давали ей вернуться к норме. Активность нейронов двигательной коры измерялась до, во время и после охлаждения мозжечка. Было установлено, что во время охлаждения импульсация нейронов моторной коры и соответствующее запрограммированное движение запаздывали.

Кроме проведения сигналов от мозжечка в моторную кору таламус передает сигналы еще от одной подкорковой структуры, а именно от большой совокупности клеточных групп, объединяемых общим названием базальных ганглиев. Во время своей работы в Национальном институте охраны психического здоровья М. Де-Лонг (М. DeLong) из Университета Джонса Гопкинса показал, что клетки базальных ганглиев разряжаются задолго до произвольных движений, совершаемых животным в ответ на сигналы, Этот факт согласуется с результатами наблюдений, сделанных в неврологических отделениях; согласно этим наблюдениям, базальные ганглии имеют решающее значение для самых ранних стадий инициации движения - стадий, когда в результате еще не разгаданных процессов абстрактная мысль переводится в конкретный двигательный акт.

Рефлексы и произвольные движения не противоположны друг другу. Это признал еще сто лет назад Джексон, когда писал, что произвольные движения подчиняются законам, управляющим рефлекторными актами. Однако если произвольным движениям нельзя дать определение путем исключения, т. е. определить их как нечто такое, что не является рефлексом, то в таком случае как же их определить? Самое сжатое из известных мне определений дал шведский нейрофизиолог Р. Гранит (R. Granit) в своей недавно опубликованной книге «Целенаправленный мозг»: «Произвольным в произвольном движении является его цель». С такой точки зрения произвольные свойства моторного акта надо рассматривать в аспекте цели совершаемого действия. В то же время действительные события, лежащие в основе достижения цели, строятся из разнообразных рефлекторных процессов.

Недавно я обсуждал этот вопрос с русским кибернетиком Виктором Гурфинкелем. Он тоже определяет произвольное движение в связи с его целью. Описывая виды процессов, на которых основано произвольное движение, он рассказал мне о некоторых кинезиологических исследованиях, направленных на оценку характеристик управления движением у лучших стрелков-спортсменов. Гурфинкель указал, что важным свойством меткого стрелка является его способность удерживать пистолет неподвижным. Как показали исследования электромиографических и кинематических характеристик снайперов, при том что многие части их тела двигались, пистолет оставался практически неподвижным. Положение руки стрелка в пространстве стабилизировали всякого рода рефлекторные механизмы; вестибуло-окулярная система, вестибуло-спинальная система и другие. Приведенный Гурфинкелем пример со стрелком вызывает в памяти точку зрения У. Джеймса (W. James) относительно сущности произвольного движения. Почти сто лет назад он писал: «Меткий стрелок в конце концов думает только о точном положении цели, певец - только о совершенстве голоса, эквилибрист - только о конце шеста, колебаниям которого он должен противодействовать».

Здесь мы видим поразительное согласие между учеными самых разных школ, дисциплин и эпох. Гранит разделяет точку зрения Джеймса и Гурфинкеля. Гранит и Гурфинкель принимают представление Шеррингтона о том, что целенаправленные движения строятся на основе рефлекторных процессов. Так же думал английский невропатолог К. Уилсон (К. Wilson). Он писал в 1928 г., что «большая часть всякого произвольного движения непроизвольна и лежит вне сознания».

Каковы же в таком случае свойства, которые отличают целенаправленные движения от лишенных цели? Несомненно, существует много видов непроизвольных движений, например возникающие при некоторых нервных болезнях. Они наблюдаются при различных поражениях базальных ганглиев. Характерно заметное нарушение произвольных движений: они или не совершаются, когда нужны, или же возникают, когда не нужны. Как указал Уилсон, у больных хореей Гентингтона возникают невольные движения, которые похожи на движения, «выполняемые по велению воли. Кажется, что каждое новое движение направлено на определенную цель, которой оно никогда не достигает». Мышечная деятельность, связанная с невольными движениями, схожа с деятельностью, связанной с произвольными движениями здорового человека. Но при хорее движения лишены цели.

По существу ясно, что законы рефлекторной деятельности, регулируемой на уровне спинальных мотонейронов, действуют также на уровне моторной коры при произвольных движениях. В свою очередь на нейроны моторной коры влияют транскортикальные входы. Таким образом, двигательная кора млекопитающих - филогенетически новая часть головного мозга - подчиняется тем же законам рефлекторной деятельности, которые характерны для его более древних частей. Кроме того, на моторную кору действует вторая мощная группа входов. Эти входы лежат в основе генерируемых изнутри моторных программ, которые создаются в результате активности базальных ганглиев и мозжечка и доходят до моторной коры через таламус.

Таким образом, из двух основных классов входов, которые воздействуют на моторную кору головного мозга и порождают поток импульсов, идущий к спинному мозгу, наиболее понятным представляется класс входов, которые работают автоматически, т. е. транскортикальная петля: она работает в соответствии с шеррингтоновскими принципами рефлекторной деятельности. Второй класс входов, берущих начало в базальных ганглиях и мозжечке и идущих в моторную кору через таламус, составляет более сложную картину. Чтобы понять произвольное движение, нужно понять те виды информации, которые перерабатываются подкорковыми структурами, и установить, как выходы из мозжечка и базальных ганглиев взаимодействуют в таламусе. Для исследователей механизмов головного мозга, управляющих движениями, эти вопросы являются самыми главными.

Мозжечок - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса. У человека располагается позади продолговатого мозга и варолиева моста, под затылочными долями полушарий головного мозга. Посредством трёх пар ножек мозжечок получает информацию из коры головного мозга, базальных ганглиев экстрапирамидной системы, ствола головного мозга и спинного мозга. это функциональное ответвление главной оси «корабольшихHYPERLINK "http://www.braintools.ru/article/3345" полушарий - спинной мозг». С одной стороны, в нём замыкается сенсорная обратная связь, то есть он получает копию афферентации (информации, передаваемой из спинного мозга в кору полушарий головного мозга), с другой стороны, сюда же поступает копия эфферентации (информации от коры полушарий к спинному мозгу) от двигательных центров.

Функции мозжечка сходны у различных биологических видов, включая человека. Это подтверждается их нарушением при повреждении мозжечка в эксперименте у животных и результатами клинических наблюдений при заболеваниях, поражающих мозжечок у человека. Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) в локомоции (перемещении в пространстве).

главными функциями мозжечка являются:

Координация движений

Регуляция равновесия

Регуляция мышечного тонуса

мозжечок участвует в регуляции движений на уровне его планирования. Функции базальных ганглиев и мозжечка во многом дополняют друг друга. Если базальные ганглии действуют как «детектор контекстов», предоставляя моторным зонам коры информацию, необходимую для планирования, выбора и подготовки движений, то мозжечок главным образом участвует в программировании и контроле выполнения движений. Таким образом, базальные ганглии активируют необходимые в данный момент моторные программы, оптимизируют последовательность включения отдельных компонентов движения, способствуют выбору его направления, тогда как мозжечок «калибрует» программы, участвуя в определении набора активируемых мышц, требуемых для выполнения задачи, а также времени их включения, с тем чтобы движение было координированным и точным.

Мозжечок определяет временные параметры моторных программ, которые уточняются при обучении. Мозжечок и базальные ганглии участвуют в процессе формирования двигательного навыка и автоматизации движений. Благодаря мозжечку происходит адаптация двигательной программы при повторении движения, вследствие которой попытки совершить его становятся все более успешными. При поражениях мозжечка даже в случае движения в одном суставе возникает задержка торможения сегмента из-за замедленной активации антагонистов, что приводит к гиперметрии. Предполагают, что замедленность активации антагонистов возникает вследствие того, что вместо предвосхищающего прямого контроля задачу коррекции движения берет на себя транскортикальная сенсомоторная петля, функционирующая как система обратной связи. Необходимость дополнительных коррекций может приводить к развитию акционного тремора. Снижение мышечного тонуса при поражениях мозжечка связано с утратой активирующего влияния на гамма-мотонейроны, что снижает чувствительность мышечных веретен и ослабляет тонические рефлексы растяжения.

25. Экстрапирамидная система (sуstеmа ехtгаругаmidale) - система ядер головного мозга и двигательных внепирамидных (экстрапирамидных) проводящих путей, осуществляющая непроизвольную, автоматическую регуляцию и координацию сложных двигательных актов, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций.

Экстрапирамидная система в отличие от пирамидной системы не является строго очерченной анатомической и функциональной системой. Она объединяет некоторые отделы коры головного мозга, базалъные ядра, ядерные образования мозгового ствола (Головной мозг), мозжечок, сегментарный аппарат спинного мозга, а также обширные коммуникации, осуществляющие мгновенную функциональную интеграцию многих нейрональных систем, обеспечивающих сложную организацию двигательных и поведенческих актов.

Физиология. Основные физиол. функции экстрапирамидная система обеспечивают координацию двигательных актов человека и животных, регуляцию мышечного тонуса и поддержание позы, организацию двигательных проявлений эмоций. Сложность строения экстрапирамидной системы, обширность связей ее структур с различными образованиями головного мозга делают трудным понимание физиологических механизмов экстрапирамидной регуляции двигательных актов. В отличие от пирамидной системы экстрапирамидная система не разделяется на отдельные пути, а представляет собой сложную систему двигательных ядер и связей между ними, а также связей двигательных центров различных функциональных уровней головного мозга с эфферентными нейронами спинного мозга и ядрами черепно-мозговых нервов через многочисленные подкорковые и стволовые структуры. В спинном мозге импульсы, поступающие по нисходящим пирамидному тракту и волокнам экстрапирамидная система, взаимодействуют с возбуждениями, приходящими по афферентным путям от проприоцепторов. Процесс интеграции возбуждений на уровне спинного мозга является важным звеном в механизме не только произвольных, но и непроизвольных движений.

Среди структурных образований экстрапирамидная система стриатум считается высшим подкорковым регуляторно-координационным центром организации движений, в то время как паллидум, влияя на нейроны спинного мозга через структуры среднего и продолговатого мозга, координирует тонус и фазовую двигательную активность мышц. Нарушения экстрапирамидной регуляции произвольной и непроизвольной двигательной активности мимических мышц (Мимика) приводят к неадекватному внешнему выражению эмоций, непроизвольному смеху и плачу или полному отсутствию мимического выражения (маскообразное лицо).

Одной из функций бледного шара является торможение нижележащих ядер среднего мозга. При повреждении бледного шара наблюдается увеличение тонуса скелетной мускулатуры (гипертонус) вследствие освобождения красного ядра среднего мозга от тормозящего влияния паллидума. Раздражение бледного шара приводит к повышению тонуса мышц и тремору конечностей, а также к ограничению и скованности движений. Подобные эффекты подавления движений отмечаются при раздражении так наз. тормозных зон экстрапирамидной системы (поясная кора головного мозга, части моторной коры, хвостатое ядро, мозжечок, ретикулярная формация).

Стриатум дает начало многим двигательным путям экстрапирамидная система, среди которых выделяют эффекторный путь, идущий к паллидуму, а далее через красное ядро и руброспинальный тракт - к спинному мозгу. Стриатум, включающий хвостатое ядро и скорлупу чечевицеобразного ядра, достаточно хорошо морфологически и нейрофизиологически изучен.

Головка хвостатого ядра играет важную роль в организации предпусковых процессов, которые включают перестройку позы, предшествующей произвольному двигательному акту. Это подтверждают данные микроэлектродных исследований, выявивших изменения нейрональной активности головки хвостатого ядра в период, предшествующий осуществлению произвольного движения. Так, с помощью микро-электродных методов Ники с сотр. показал, что у обезьян в ситуации простого выбора и нажатия на рычаг активация нейронов головки хвостатого ядра перед началом произвольного движения предшествует активации нейронов префронтальной коры.

26. Базальные ядра

Базальные (подкорковые) ядра (nuclei basales) головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleus caudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globus pallidus).

При поражениях базальных ганглиев может страдать гибкость поведения за счет нарушения способности адекватно реагировать на новые сигналы или изменение ситуации: больные не в состоянии своевременно предотвратить реализацию текущей программы и переключиться на более адаптивное действие. Кроме того, при их поражении затруднена способность приобретать новые навыки, а обучение происходит более медленно и менее эффективно.

Расстройства и болезни, связанные с базальными ганглиями

Атимормия

ДЦП: повреждения базальных ядер во время второго и/или третьего триместра беременности

Дистонии

Болезнь Фара

Болезнь Хантингтона

Синдром иностранного акцента

Ядерная желтуха

Синдром Лёша - Нихена

Большое депрессивное расстройство

Обсессивно-компульсивное расстройство

Другие тревожные расстройства

Болезнь Паркинсона

ПАНДАС (Педиатрическое аутоиммунное нейропсихиатрическое расстройство, ассоциированное со стрептококковой инфекцией)

Пляска святого Витта

Расстройство Туретта

Поздняя дискинезия, вызванная хронической терапией нейролептиками

Заикание

Судорожная дисфония

Болезнь Вильсона-Коновалова

Блефароспазм

Электроэнцефалограмма-запись суммарной активности нейронов коры БП.

Альфа ритм(состояние спокойного бодрствования (лежа с закр.глазами))Частота 14 Гц, амплитуда 100ммВт

В ритм (при активности или действии раздражителя(открытые глаза) частота 14-100 Гц, амплитуда 50 и >

Тетта ритм (во время сна и при эмоциональной напряженности, или патологиях) частота 4-7 Гц, амплитуда 100 ммВТ и >

Дельта ритм(во время глубокого сна, наркоз, или патологии) частота 0,5-3 Гц, амплитуда <100 ммВт

ЭЭГ взрослых имеет веретенообразную структуру (сост из альфа и бетта ритмов)

28.Локализация функций в коре больших полушарий головного мозга

1. Поля Бродмана В коре головного мозга различают зоны - поля Бродмана (нем. физиолог).
1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно - ослабление, резкое снижение, исчезновение).
В 50-е годы ХХ в. установили, что в двигательной зоне различные группы мышц представлены неодинаково. Мышцы нижней конечности - в верхнем отделе 1-ой зоны. Мышцы верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимают проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.
2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.
1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.
3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота).
Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение при точечном разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.
4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.
5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).
6-я зона - вкусовая - 43 поле Бродмана.
7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.
Эта зона состоит из 3-х отделов.
Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка. При поражении этой области - моторная афазия.
Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. При поражении возникает сенсорная афазия - человек не воспринимает устную речь, страдает произношение, та как нарушается восприятие собственной речи.
Центр восприятия письменной речи - располагается в зрительной зоне коры головного мозга - 18 поле Бродмана аналогичные центры, но менее развитые, есть и в правом полушарии, степень их развития зависит от кровоснабжения. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени. Если у детей повреждается левой полушарие, то его функцию на себя берет правое. У взрослых способность правого полушария воспроизводить речевые функции - утрачивается.
Всего различают (по Бродману) - 53 поля.

2. Представление Павлова о локализации функций в коре головного мозга Кора головного мозга - это совокупность мозговых отделов, анализаторов. Различные отделы коры головного мозга могут выполнять одновременно и афферентные и эфферентные функции.
Мозговой отдел анализатора - состоит из ядра (центральная часть) и рассеянных нервных клеток. Ядро - совокупность высокоразвитых нейронов расположенных в строго определенной зоне коры головного мозга. Поражение ядра приводит к выпадению определенной функции. Ядро зрительного анализатора расположено в затылочной области, мозговой отдел слухового анализатора - в височной области.

29. Лимбическая система (висцеральный мозг)

Лимбическая система (от латинского limbus - кайма) - обширная нейронная структура - является морфофункциональным комплексом структур, которые расположены в различных отделах конечного мозга и промежуточного мозга (рис. 68). Лимбическую систему формируют лимбические и паралимбические структуры (ряд образований на медиальной и нижней поверхностях полушарийпродолговатого мозга, передние и медиальные ядра таламуса, медиальные и базальные отделыстриатума, а также гипоталамус) (табл. 25.1). Она координирует эмоциональные, мотивационные, вегетативные и эндокринные процессы. В нее включены древние подкорковые и плащевые структуры. Отконечного мозга в нее входят поясная извилина, зубчатая извилина, гиппокамп (морской конек) , септум (перегородка) и миндалевидные тела. В промежуточном мозге расположены 4 основные структуры лимбической системы: хабенулярные ядра (ядра поводков) , таламус, гипоталамус и сосцевидные тела. Волокна, соединяющие структуры лимбической системы, образуют свод конечного мозга, который проходит в виде арки от архикортекса до сосцевидных тел.

Лимбическая система объединена многочисленными связями с неокортексом и автономной нервной системой, поэтому она интегрирует две важнейшие функции мозга животного и человека - эмоции ипамять. Удаление части лимбической системы приводит к эмоциональной пассивности животного, а стимуляция - к эмоциональной гиперактивности. Активизация миндалевидного комплекса запускаетмеханизмы агрессии, которые могут корректироваться гиппокампом. Лимбическая система запускаетпищевое поведение и вызывает чувство опасности. Все эти формы поведения контролируются как самой лимбической системой, так и через гормоны, вырабатываемые гипоталамусом. Влияние лимбической системы на функции организма осуществляется через контроль за деятельностью автономной нервной системы. Роль лимбической системы столь высока, что ее называют висцеральным мозгом. Она обусловливает эмоционально- гормональную активность животного, которая, как правило, плохо поддается рассудочному контролю даже у человека.

Важнейшей функцией лимбической системы является взаимодействие с механизмами памяти.Краткосрочную память обычно связывают с гиппокампом, а долгосрочную - с неокортексом. Однако извлечение индивидуального опыта животного и человека из неокортекса осуществляется через лимбическую систему. При этом используется эмоционально-гормональная стимуляция мозга, которая вызывает информацию из неокортекса.

Лимбическая система обеспечивает и еще одну важную функцию, нарушение которой часто встречается в клинической практике, - декларативную, или вербальную, память о событиях, приобретенных навыках и накопленных знаниях.

Лимбическая система обладает уникальным набором эффекторных структур. В них входят управление моторикой внутренних органов, двигательная активность для выражения эмоций и гормональная стимуляция организма. Чем ниже уровень развития неокортекса, тем больше поведение животного зависит от лимбической системы.

После предварительной переработки в центральной нервной системе второй уровень центральной переработки информации происходит в четырех функциональных системах, к которым приходят сигналы от органов чувств. Это ассоциативная система, лимбическая система, двигательная система ивегетативная система. Сложное, почти неисследованное взаимодействие этих областей мозга можно считать основой нашего поведения.

В основном к лимбической системе относят структуры обонятельного мозга - наиболее древней части полушарий. В описаниях морфологов лимбическую систему представляют в виде "анатомического эмоционального кольца", в состав которого входят различные образования мозга (рис. 223). Это корковые структуры: гиппокамп, парагиппокампова извилина, поясная извилина, структурыобонятельного мозга (обонятельные луковицы, обонятельные бугорки), области коры над миндалиной, а также частично кора лобной, кора островковой и кора височной долей; подкорковые структуры (миндалина, ядра перегородки, ядра таламуса передние), гипоталамус, сосцевидные тела. Как уже было сказано выше, все лимбические структуры связаны между собой и с другими отделами мозга. Особенно богаты связи с гипоталамусом. Кора лобных долей регулирует деятельность лимбической системы. Через лимбическую систему проходят сигналы, направляющиеся от всех органов чувств в кору полушарий, а также в обратном направлении. Она обусловливает эмоциональный настрой человека и мотивации, т. е. побуждение к действию, поведение, процессы научения и памяти, а также обеспечивает общее улучшение приспособления организма к постоянно изменяющимся условиям внешней среды.

Несмотря на то что поражение лимбических структур вызывает амнезию, лимбическую систему нельзя считать хранилищем. Следы памяти распределены по всей ассоциативной коре, и роль лимбической системы состоит в объединении этих отдельных фрагментов в доступные для припоминания события и знания. Поражение лимбической системы не стирает следы памяти, а нарушает их сознательное воспроизведение, при этом отдельные фрагменты информации остаются сохранными и обеспечивают так называемую процедурную память. Так, больные с корсаковским синдромом способны усвоить новый двигательный или перцептивный навык, но при этом не помнят, как и чему научились.

Нейрогуморальная регуляция функций в организме

Жизнедеятельность каждого организма должна находиться в строгом соответствии с условиями окружающей среды. Для этого каждое существо должно воспринимать сигналы внешней среды (свет, звук, температуру, давление и др.), усваивать, обрабатывать их и правильно на них реагировать. В этом случае весь организм должен выступать как единое целое, органы и системы органов которого работают согласованно, упорядоченно. Такую согласованность, упорядоченность действий в организме человека выполняют два механизма: нервный и гуморальный.

Нервная регуляция - регуляция жизнедеятельности организма с помощью нервной системы. Гуморальная регуляция осуществляется с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость). Образование гормонов железами внутренней секреции и выделение их в кровь осуществляется под контролирующим влиянием нервной системы. В связи с этим следует рассматривать и говорить не о раздельном влиянии нервной системы и гуморальных факторов, а о едином механизме нейрогуморальной регуляции функций организма.

Важнейшее свойство организма - саморегуляция физиологических функций, которая автоматически поддерживает относительное постоянство внутренней среды организма - гомеостаз, что является необходимым условием существования. Саморегуляция возможна потому, что имеются обратные связи между регулируемым процессом и регулирующей системой, когда информация о конечном результате поступает в центральную нервную систему.

30. Нейрогуморальная регуляция функций в организме

Жизнедеятельность каждого организма должна находиться в строгом соответствии с условиями окружающей среды. Для этого каждое существо должно воспринимать сигналы внешней среды (свет, звук, температуру, давление и др.), усваивать, обрабатывать их и правильно на них реагировать. В этом случае весь организм должен выступать как единое целое, органы и системы органов которого работают согласованно, упорядоченно.

Такую согласованность, упорядоченность действий в организме человека выполняют два механизма: нервный и гуморальный. Их действием и влиянием на органы, системы органов осуществляется регуляция всех процессов жизнедеятельности организма, обеспечивается его целостность.

Нервная регуляция - регуляция жизнедеятельности организма с помощью нервной системы. Гуморальная регуляция осуществляется с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость).

Нервная и гуморальная регуляции функций организма взаимосвязаны. На функциональное состояние нервной системы оказывают влияние активные химические вещества, циркулирующие в крови, например гормоны (от греческого «гормао» - побуждать). Образование гормонов железами внутренней секреции и выделение их в кровь осуществляется под контролирующим влиянием нервной системы. В связи с этим следует рассматривать и говорить не о раздельном влиянии нервной системы и гуморальных факторов, а о едином механизме нейрогуморальной регуляции функций организма.

Важнейшее свойство организма - саморегуляция физиологических функций, которая автоматически поддерживает относительное постоянство внутренней среды организма - гомеостаз (от греческого «гомоис» - тот же самый и «стасис» - состояние), что является необходимым условием существования. Саморегуляция возможна потому, что имеются обратные связи между регулируемым процессом и регулирующей системой, когда информация о конечном результате поступает в центральную нервную систему.

Нервная система представляет собой совокупность структур, которые регулируют работу отдельных органов и систем, осуществляют взаимосвязь отдельных органов между собой и всего организма с внешней средой.

Структурной и функциональной единицей нервной системы является нервная клетка нейрон, диаметр которого составляет менее 0.1 мм. В нейроне различают три части: тело клетки, длинный отросток - аксон и сильно разветвленный -дендрит. Дендриты составляют часть нейрона, специализированную для приема сигналов, поступающих из внешней среды или от другой клетки.

Аксон приспособлен для проведения или передачи возбуждения от нервной клетки к другим нервным клеткам или к рабочим органам.

В функциональном отношении нейроны подразделяются на чувствительные,двигательные и вставочные.

Нейроны вместе с нейроглией (клеткой, заполняющей промежутки между нейронами) образуют нервную ткань.

Основные процессы, происходящие в нервной системе, - возбуждение и торможение. Нервная система отличается высокой возбудимостью и проводимостью, в основе ее регуляторной и координационной деятельности лежатрефлексы - ответы организма на раздражение. Путь, по которому проводятся нервные импульсы при осуществлении рефлексов, называют рефлекторной дугой.

Рефлекторная дуга начинается рецептором и состоит из пяти частей: рецептора,чувствительного пути, участка центральной нервной системы, двигательного пути и рабочего органа.

От рецептора нервные импульсы по чувствительному пути передаются в центральную нервную систему. Этот путь образован чувствительным нейроном. От центральной нервной системы импульсы по двигательному пути идут к рабочему органу.

31. Общая характеристика нервной регуляции: безусловнорефлекторная и условнорефлекторная.

Условными называют рефлексы, приобретенные организмом в течение жизни. Они образуются на базе наследуемых, при условии воздействия внешнего раздражителя (времени, стука, света и так далее). Ярким примером служат опыты, проведенные на собаках академиком И.П. Павловым. Он изучал образование этого типа рефлексов на животных, являлся разработчиком уникальной методики их получения. Так, для выработки таких реакций необходимо наличие регулярного раздражителя – сигнала. Он запускает механизм, а многократное повторение воздействия раздражителя позволяет вырабатывать условный рефлекс. При этом возникает так называемая временная связь между дугами безусловного рефлекса и центрами анализаторов. Теперь основной инстинкт пробуждается под действием принципиально новых сигналов внешнего характера. Данные раздражители окружающего мира, к которым ранее организм был безразличен, начинают приобретать исключительное, жизненно важное значение. У каждого живого существа в течение жизни может вырабатываться множество различных условных рефлексов, составляющих основу его опыта. Однако это относится только к данной конкретной особи, по наследству этот жизненный опыт не передастся.

В самостоятельную категорию принято выделять вырабатываемые в течение жизни условные рефлексы двигательного характера, то есть навыки либо автоматизированные действия. Их смысл заключается в освоении новых умений, а также выработке новых двигательных форм. Например, за весь период своей жизни человек овладевает множеством специальных двигательных навыков, которые связаны с его профессией. Они являются основой нашего поведения. Мышление, внимание, сознание освобождаются при выполнении операций, которые достигли автоматизма и стали реалией повседневной жизни. Наиболее успешным путем овладения навыками является систематическое выполнение упражнения, своевременное исправление замеченных ошибок, а также знание конечной цели любой задачи. В том случае, если условный раздражитель не подкрепляется какое-то время безусловным, происходит его торможение. Однако совсем он не исчезает. Если по прошествии какого-то времени повторить действие, то рефлекс довольно быстро восстановится. Торможение может возникнуть и при условии возникновения раздражителя еще большей силы.

Безусловный рефлекс – это врожденная, наследуемая потомством от родителей стереотипная реакция организма на воздействие внутренней или окружающей среды. Он сохраняется у человека в течение всей его жизни. Рефлекторные дуги проходят через головной и спинной мозг, кора больших полушарий не принимает участия в их образовании. Значение безусловного рефлекса в том, что он обеспечивает приспособление организма человека непосредственно к тем изменениям среды, которые часто сопровождали многие поколения его предков.

Безусловный рефлекс – это основная форма деятельности нервной системы, автоматическая реакция на раздражитель. А поскольку на человека воздействуют различные факторы, то и рефлексы бывают разные: пищевой, оборонительный, ориентировочный, половой... К пищевым относятся слюноотделение, глотание и сосание. Оборонительными выступают кашель, мигание, чихание, отдергивание конечностей от горячих предметов. Ориентировочными реакциями можно назвать повороты головы, скашивание глаз. К половым относятся инстинкты, связанные с воспроизведением, а также уходом за потомством. Значение безусловного рефлекса заключается в том, что он обеспечивает сохранение целостности организма, поддерживает постоянство внутренней среды. Благодаря ему происходит размножение. Даже у новорожденных детей можно наблюдать элементарный безусловный рефлекс - это сосание. Кстати, он является наиболее важным. Раздражителем в данном случае выступает прикосновение к губам какого-либо предмета (соски, груди матери, игрушки или пальца). Другой важный безусловный рефлекс - это мигание, возникающее в том случае, когда постороннее тело приблизится к глазу либо коснется роговицы. Такая реакция относится к защитной или оборонительной группе. Также у детей наблюдается сужение зрачков, например, при воздействии сильного света. Однако наиболее ярко признаки безусловных рефлексов проявляются у различных животных.

Схема безусловного рефлекса Согласно исследованиям академика И.П. Павлова, общая схема безусловных рефлексов заключается в следующем. На те или иные рецепторные нервные приборы воздействуют те или иные раздражители внутреннего или внешнего мира организма. В результате полученное раздражение преобразует весь процесс в так называемое явление нервного возбуждения. Оно передается по нервным волокнам (как по проводам) в ЦНС, а оттуда поступает к конкретному рабочему органу, уже превращаясь в специфический процесс на клеточном уровне данного участка организма. Получается, что те или иные раздражители закономерно связаны с той или иной деятельностью так же, как причина со следствием. Особенности безусловных рефлексов Представленная ниже характеристика безусловных рефлексов как бы систематизирует изложенный выше материал, она поможет окончательно разобраться с рассматриваемым нами явлением. Итак, каковы же особенности наследуемых реакций? Врожденный характер ответа организма на раздражители. Постоянство нервных связей между определенными видами раздражений и ответных реакций. Видовой характер: однотипные рефлексы протекают идентично у всех представителей конкретного вида живых организмов, они отличаются только характерными особенностями животных, которые принадлежат к различным видам. Например, инстинктивная забота о потомстве у всех пчел в рое совершенно одинаковая, однако отличается от тех же инстинктов ос или муравьев. Врожденные безусловные рефлексы вообще не зависят от личного опыта, они практически не изменяются в течение жизни животного. У высших организмов этот тип реакций, как правило, осуществляется низшими отделами нервной системы, участие коры больших полушарий головного мозга не зафиксировано.

33 Значение биоритма для жизнедеятельности организма. Функциональные состояния организма. Бодрствование сон.

Биоритмы - периодические изменения интенсивности и характера биологических процессов, которые самоподдерживаются и самовоспроизводятся в любых условиях.

Биоритмы характеризуются:

Периодом - продолжительностью одного цикла колебаний в единицу времени;

Частотой ритмов - частотой периодических процессов в единицу времени;

Фазой - частью цикла, измеряемой в долях периода (начальная, конечная и т.д.);

Амплитудой - размахом колебаний между максимумом и минимумом.

Полутора часовой ритм (от 90 до 100 минут) чередования нейрональной активности мозга как во время бодрствования, так и во время сна, являющийся причиной полуторачасовых колебаний умственной работоспособности и полуторачасовых циклов биоэлектрической активности мозга во время сна. Через каждые полтора часа человек испытывает попеременно то низкую, то повышенную возбудимость, то умиротворенность, то беспокойство;

Суточный ритм (24 часа) влияет на состояние человека и выражается в цикле бодрствование - сон;

Месячный ритм. Месячной цикличности подчинены определенные изменения в организме женщины. Недавно установлен околомесячный ритм работоспособности и настроения мужчин;

Годовой ритм. Отмечаются циклические изменения организма ежегодно во время смены времен года. Установлено, что в разное время года различно содержание гемоглобина и холестерина в крови.

У человека и многих животных период сна и бодрствования приурочен к суточной смене дня и ночи. Такой сон называется монофазным. Если же смена сна и бодрствования происходит несколько раз в сутки, сон называется полифазным.

Сон человека имеет правильную циклическую организацию. В течение сна изменяются физиологические показатели, поведение человека, на основании чего выделяют пять стадий сна.

Глубокий сон, в течение которого регистрируется медленноволновая биоэлектрическая активность, глубокое и редкое дыхание; спокойное и расслабленное состояние относят к медленному сну (стадия медленного сна).

Стадия быстрого сна характеризуется высокочастотной биоэлектрической активностью мозга (схожей с регистрируемой в состоянии бодрствования), учащением дыхания, частоты сердечных сокращений, быстрыми движениями глазных яблок и т.д.

Всего выделяют четыре стадии медленноволнового сна и одну - быстрого. Завершенным циклом считается отрезок сна, в котором происходит последовательная смена стадий медленноволнового сна, быстрым сном. В среднем отмечается 4-6 таких циклов за ночь, продолжительностью примерно 1,5 часа каждый.

Первая стадия является переходной от состояния бодрствования ко сну, что сопровождается уменьшением альфа-активности волн с частотой 8-12 Гц, характерных для состояния бодрствования, и появлением низкоамплитудных медленных волн. В поведении эта стадия соответствует периоду дремоты с полусонными мечтаниями, она может быть связана с рождением интуитивных идей, способствующих успешному решению той или иной проблемы.

Вторая стадия получила название стадии «сонных веретен», т.к. наиболее яркой ее чертой является появление в ЭЭГ характерных кривых в виде «веретен» (с частотой колебаний 12-16 Гц). Третья стадия характеризуется всеми чертами второй стадии, к которым добавляется наличие в ЭЭГ медленных колебаний (частотой 2 Гц), занимающих от 20 до 50% времени. Это переходный период, который продолжается всего несколько минут. Четвертая стадия характеризуется преобладанием в ЭЭГ медленных дельта-колебаний с частотой 2 Гц и менее, занимающих более 50% записи ночного сна.

Третья и четвертые стадии обычно объединяют под названием дельта-сна. Глубокие стадии дельта-сна более выражены в начале и постепенно уменьшаются к концу сна. В этой стадии разбудить человека достаточно трудно. Именно в это время возникают около 80% сновидений и именно в этой стадии возможны приступы снохождения и ночные кошмары, однако человек потом почти ничего не помнит. Первые четыре стадии сна в норме занимают 75-80% всего периода сна и носят обобщенное название -медленноволновой сон - стадия ночного сна, для которого характерна медленная синхронизированная ритмическая активность по показателям электроэнцефалограммы.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии