Значение слова фоторецепторы в большом российском энциклопедическом словаре. Особенности и функции зрительного анализатора

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

6.4.6. Структура и функции сетчатки

Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза (периферическое звено зрительной сенсорной системы), в которой расположены два вида вторично-чувствующих, различных по своему функциональному значению фоторецепторов (палочек и колбочек) и несколько видов нервных клеток . Сетчатка имеет сложное строение, включает в себя несколько слоев.

Рассмотрим структуру и функции слоев сетчатки, следуя от наружного слоя, прилегающего к сосудистой оболочке, к внутреннему слою, прилегающему к стекловидному телу (рис. 62. В).

Рис. 62. Строение глаза:

А – схема строения глазного яблока: 1 - роговая оболочка; 2 - передняя камера глаза; 3 - мышца, суживающая зрачок; 4 - мышца, расширяющая зрачок; 5 - радужная оболочка; 6 - хрусталик; 7 - волокна цинновой связки; 8 - ресничные отростки; 9,10 - циркулярные и радиальные волокна ресничной мышцы; 11 - склера; 12 - сосудистая оболочка.

Б - схема строения фоторецепторной клетки: 1 - наружный сегмент; 2 - ножка; 3 - внутренний сегмент; 4 - ядро; 5 - синаптический отросток; 6 - митохондрии; 7 - диски.

В - схема строения сетчатой оболочки : 1 - палочки; 2 - колбочки; 3 - слой фоторецепторных клеток; 4 - слой синаптических связей фоторецепторных клеток с биполярными нейронами; 5 - слой биполярных нейронов; 6 - биполярные нейроны; 7 - амакриновая клетка; 8 - слой синаптических связей биполярных нейронов с ганглиозными нейронами; 9 - ганглиозные нервные клетки; 10 - волокна зрительного нерва; 11 - горизонтальная клетка.

Наружный слой сетчатки - пигментный слой образован одним рядом эпителиальных клеток, содержащих пигмент меланин, который придает слою черный цвет. Этот пигмент называют также экранирующим пигментом, он поглощает доходящий до него свет, препятствуя тем самым его отражению и рассеиванию, что способствует четкости зрительного восприятия. Клетки пигментного эпителия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек. Пигментные клетки принимают участие в обмене веществ в фоторецепторных клетках, содержат витамин А, обеспечивают обновление мембран фоторецепторов, «откусывая» и переваривая старые диски мембран, обломки наружных сегментов палочек и колбочек. Обновление отработанных палочковых дисков происходит днем, колбочковых - ночью.

Контакт между клетками пигментного эпителия и фоторецепторами достаточно слабый . Именно в этом месте происходит отслойка сетчатки - опасное заболевание глаз. оно приводит к нарушению зрения не только вследствие ее смещения с места оптического фокусирования изображения, но и вследствие дегенерации рецепторов из-за нарушения контакта с пигментным эпителием, что приводит к серьезнейшему нарушению метаболизма самих рецепторов. Метаболические нарушения усугубляются тем, что нарушается доставка питательных веществ из капилляров сосудистой оболочки глаза, так как сам слой фоторецепторов не содержит капилляров.

Фоторецепторы. К пигментному слою с внутренней стороны сетчатки примыкает слой фоторецепторов - палочек и колбочек. Палочки и колбочки распределяются в сетчатке глаза неравномерно. Центральная часть сетчатки называется желтым пятном (место наилучшего видения), в центре его имеется небольшое углубление – центральная ямка . В ней располагаются только колбочки (до 140 тыс. на 1 мм 2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, на дальней периферии имеются только палочки. Поэтому в сетчатке каждого глаза человека находится 6-7 млн. колбочек и 110-123 млн. палочек. Желтый цвет желтому пятну придает лютеин, он играет роль защитного светофильтра и нейтрализует свободные радикалы в сетчатке глаза.

Современные искусственные источники света (мониторы компьютеров, экраны телевизоров) дают яркий синий цвет и вызывают превращение молекул клеток желтого пятна в свободные радикалы, разрушающие клетки пятна. С дефицитом лютеина связывают развитие возрастной дегенерации (вырождения) клеток желтого пятна, что приводит к потери зрения у людей старшего возраста. Много лютеина содержится в шпинате, желтом перце, кукурузе.

Каждая фоторецепторная клетка состоит из наружного светочувствительного сегмента , содержащего зрительный пигмент, и внутреннего сегмента , содержащего ядро и митохондрии (последние обеспечивают энергетические процессы в фоторецепторной клетке). Внутренний сегмент переходит в отросток, контактирующий с дендритом биполярного нейрона.

Палочки и колбочки сетчатки обращены своими светочувствительными наружными сегментами к пигментному эпителию, т. е. в сторону, противоположную свету. Мембрана наружного сегмента образует складки - тонкие дисковидные пластинки (рис. 62. Б). Они содержат молекулы зрительных пигментов, в палочках находится пигмент родопсин , в колбочках родственный ему пигмент – йодопсин (он состоит из нескольких зрительных пигментов, в настоящее время известны и исследованы два пигмента: хлоролаб и эритролаб).

Палочки обладают более высокой чувствительностью к световым лучам и обеспечивают сумеречное зрение. Для возбуждения колбочек необходимо более сильное освещение, поэтому они обеспечивают дневное цветовое зрение . В сумерках центральное колбочковое зрение резко снижается, преобладает периферическое палочковое зрение, поэтому в сумерках практически человек не различает цвета («ночью все кошки серы»).

В фоторецепторах происходит взаимодействие квантов света с фотопигментами. При поглощении кванта света молекулой зрительного пигмента (родопсина) происходит цикл фотохимических реакций, которые приводят в конечном итоге к распаду родопсина на ретиналь (альдегид витамина А) и белок опсин. Эти фотохимические реакции вызывают изменение проницаемости мембран дисков фоторецепторов для ионов натрия, что приводит к возникновению рецепторного потенциала, т. е. к трансформации световой энергии в нервное возбуждение. В темноте происходит ресинтез родопсина. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их в пище приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты».

Нейроны сетчатки. В сетчатке различают 4 типа нейронов: биполярные, ганглиозные, горизонтальные, амакриновые.

Возбуждение, возникшее в фоторецепторной клетке, по отростку внутреннего сегмента передается через синаптические контакты на дендриты биполярных нейронов. Биполярные нейроны, в свою очередь, передают возбуждение ганглиозным нейронам, которые прилегают изнутри к биполярным нейронам. Аксоны ганглиозных нервных клеток образуют волокна зрительного нерва (нерв содержит около 1 млн. волокон).

Горизонтальные и амакриновые нейроны связывают между собой биполярные и ганглиозные т нейроны.

Место выхода зрительного нерваиз глаза – диск зрительного нерва,называется слепым пятном , этот участок сетчатки не содержит фоторецепторов и нечувствителен к свету. Если изображение предмета попадает на слепое пятно, предмет не виден, в этом можно убедиться с помощью опыта Мариотта . Если закрыть правый глаз, а левым фиксировать круг на рисунке 6, то на определенном расстоянии рисунка от глаза (от 10 до 25 см), крест исчезает, так как его изображение падает на слепое пятно (рис. 63).

Рис. 63. Схема опыта Мариотта

В центральной ямке каждая колбочка контактирует с одной биполярной клеткой, которая в свою очередь соединена с одной ганглиозной клеткой. На периферии сетчатки значительное количество колбочек и палочек связаны с одной биполярной клеткой (одна биполярная клетка объединяет от 200 до 300 фоторецепторов), а несколько биполярных клеток – с одной ганглиозной клеткой. Таким образом, импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке (она является общим конечным путем).

Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

  1. Светоощущение
  2. цветоощущение
  3. восприятие формы и движения объектов (острота зрения, поле зрения)
  4. бинокулярное зрение (способность зрительной системы соединять изоброжение с двух глаз в один образ и локализовать его по направлению и глубине).

Реализация этих функций связана с сетчаткой глаза .

Изображение внешней среды через оптическую систему фокусируется на сетчатке. Она охватывает пространство в 100 градусов вокруг пространственной оси.

У человека наружных слоем сетчатки будет являться слой пигментных клеток. Они обеспечивают поглощение света, и таким образом устраняют светорассеивание.

Можно выделить вертикальные и горизонтальные слои. Вертикальные слои представлены слоями палочек и колбочек (их светочувствительные сегменты направлены к пигментному эпителию), слоем биполярных клеток (с ними фоторецепторы образуют синоптические связи), слоем ганглиозных клеток (аксоны формируют зрительный нерв).

Так же существуют горизонтальные клетки между фоторецепторами и биполярными клетками. Второй горизонтальный словй предоставлен анокриновыми клетками, которые располагаются между биполярными и ганглиозными.

Желтое пятно.

В центре находится центральная ямка. Фоторецепторы в этой зоне представлены колбочками, которые имеют диаметр около 0,5 мкм. Плотность этих фоторецепторов достигает 150 000 на одик квадратный мл. По мере удаления от желтого пятная к периферии число колбочек уменьшается, но увеличивается число палочек. 120 мл колбочек и 120 мл палочек.

Число волокон в зрительном нерве составляет 500 тыс. Поэтому существует конвергенция. На одну ганглиозную клетку приходится до 100 рецепторных клеток.

Палочки воспринимают лучи в условиях сумеречного зрения (при плохой освещенности). Они не погут передать цветопигменты. С колбочками же связано восприятие цветов.

По месту локализации колбочки отвечают за центральное зрение, а палочки будут обеспечивать периферическое зрение.

Строение фоторецептора.

Каждый фоторцептор состоит из наружного сегмента, внутреннего сегмента. В центре находится ядро, митохондрии, другие органеллы клетки, которые обеспечивают энергетический процесс. Наружный сегмент имеет пластинчатое строение и состотит из дисков. В палочках насчитывается от 400 до 800 в одном фоторецепторе. Каждый диск представляет собой двойную мембрану. Имеется двойной слой липидов, а между ними находится слой белка. Диски образуются путем выпячивания наружной мембраны фоторецепторов. В палочках эти диски отшнуровыываются от наружной мембраны. Внутри дисков содержится большое количество ионов натрия. С мембранами дисков связаны зрительные пигменты. В палочках содержится зритеьлный пигмент родопсин. А пигменты колбочек обозначают как фотоксины. Но в сетчатке у человека колобочки содержат 3 разносидности пигмента. Поэтому их подразделяют на S, L и M тип в зависимости от восприятия разной длинной волны.

Зрительный пигмент палочек родопсин состоит из белка опсина и альдегида витамина А ретиналя. Родопсин имеет максимальную чувствительность к длине волны (505 нм). Цвет родопсина - пурпурный. молекулярный вес составляют 41 т. Молекулы родопсина связаны с G белками дисков мембран. Родопсин может поглощать световые лучи, которые вызывают фотохимическую реакцию. При поглащении света происходит изменение положения ретиналя и он переходит из 11-цис формы в форму All trans. При тому происходит выпрямление молекулы ретиналя. Она выпрямляется, а затем отсоединяется от белка. Когда происходит отсоединение, то он поглощается пигментными клетками. Происходит встраивание в ряд промежуточных содениней, одним из которых будет являться метародопсин 2. Активированная форма подвергает полочку к активации белка трансдуцина. Это тоже разновидность G белка, который содержится в палочке. Трансдуцин активирует фермент фосфодиэстеразу. А фосфодиэстераза действует на циклический ГМФ и превращает его в 5 ГМФ. Было доказано, что наличие циклического ГМФ поддерижвает в открытом состоянии натриевые каналы. В темноте наружный сегмент имеет повышенной способностью к проникновению натрия. Ионы натрия выделяются из внутреннего сегмента фоторецепторов за счет натриево-калиевого насоса. выделившийся натрий проникает через мембрану наружного сегмента и вызывает ее деполяризацию. Натрий так же проникает в синоптическое окончание фоторецептора, вызывая деполяризацию пресинаптической мембраны.

Воздействие света на фоторцептор завершается тем, что натриевые каналы на свету начинают закрывться. Гиперполяризация мембраны фоторецептора и уменьшение выделения медиатора. Мембранный потенциал в темноте составляет -40 мВ. При действии света мембранный потенциал начинает увеличиваться (гиперполяризуется). Фотохимические реации носят каскадный характер. Одна молекула активированного методоксина 2 активирует 500 молекул трансдуцина. Активированный трансдуцин обеспечивает активацию нескольких тысяч молекул цАМФ.

При возбуждении фоторецепторов происходит дальнешая передача возбуждения на биполярные клетки. При этом было обнаружено, что биполярные клетки могут быть деполяризующимися и гиперполяризующимися. Свет действует на палочки колбочки, пигмент разлагается, возникает гипеерполяризация, происходит уменьшение медатора, что влияет на биполярные клетки. Они в свою очередь делятся на деполяризующиеся (тормозятся в темноте) и гиперполяризующие (возбуждаются на свету), далее сигнал передается на биполярные клетки. Ганглиозные клетки в сетчатке галаз находятся в состоянии постоянной активности. В них возникает потенциал действия. Формирование потенциала действия связано только с возбуждением ганглиозных клеток. Влияние биполярных клеток на ганглиозные меняет частоту разряда в ганглиозных клетках. Одновременно с активацией вертикальных слоев происходит активация горизонтальных клеток. Горизонтальные клетки так же могут быть затарможенными, но возбуждаются на свету. Медиатор Горизонтальных клеток оказывает тормозное действие на лежащие радом фоторецепторы (возникает латеральное торможение).

В ходе воздействия формируется 3 изображения. Первое возникает в фоторецепторах. Второе возникает в биполярных клетках. Третье - в ганглиозных. Формирование и активация нервых элементов сетчатки происходит за счет множества медиаторов. Эти медиаторы включают ацетилхолин, дофамин, серотонин, ГАМК, глицин, вещество P, соматостатин, эндорфины и энгипарины, холицистокенин, глюкагон, нейрокензин.

При их возбуждении было обнаружено, что рецепторные, биполярные и ганглиозные клетки могут реагировать на изображние со светлым центром, окруженное темным полем. Это реакция на включение.

Вторая группа нейронов реагирует на темный центр, окруженный светлым полем. Такая реакция будет называться реакцией на выключение

Ганглиозные клетки в сетчатке представлены 3 группамми. Ганглоизоные клетки подразделяют на M, P, W

Аксоны M-клеток заканчиваются в крупно-клеточных слоях латерального коленчатого тела. P-клетки обадают более уским рецептивным полем.

Ганглиозные клетки проводят возбуждение к 4 подкорковым структурам.

  1. это верхные букорки четверохолмия среднего мозга
  2. Латеральные коленчатые тела зрительного бугра
  3. супрахиазнальные ядра гипоталамуса
  4. ядра глазодвигательного нерва

Латеральные коленчатые тела. В латеральных коленчатых телах выявлено 6 дифференцированных слоев клеток. При этом первый и второй слои содержат. Неперекрещенные волокна оканчиваются во втором, третьем и пятом слоях. Мелкоклеточные слои передают восприятие цвета, фактуры, формы итонкого различения глубины зрения. Крупноклеточные слои воспринимают движение и мерцание.

Финальная точка - поле 17 коры затылочной доли на клетках четвертого слоя. А оттуда аксоны поднимаются к более поверхностным слоям.

Зрительная кора построена по колоночному принципу, когда клетки располагаются в форме вертикальной колонки, а 6 слоев коры начинают работать на обработку сигнала. 17 поле окружено дополнительными оценочными полями (18 и 19)

Предполагается, что в зрительной коре существует 3 корковых системы. Одна формирует восприятие форм. Вотрая корковая система обеспечивает восприятие цвета. Третяя система воспринимает движение, локализацию и пространственное отношение предмета. Информация из этих трех систем объединяется в один интегральный зрительный образ.

Зрительная система передает возможность передавать цвета. Все разнообразие цветом можно разделить на 2 группы: ахроматические (белый, черный и оттенки серого) и хроматические (имеют определенный цветовой тон.

Красный цвет: 723-647 нм (L)

Зеленый цвет: 575-492 нм (M)

Синий цвет: 492-450 нм (S)

Трехкомпонентная теория.

Существуют максимумы поглащения в области красного, зеленого и синего цветов. При действии лучей разной длинны волны происходит смешение цветов. Выделяют оптическое и вычитательное смешение. Желтый и синий лучи дадут ощущение белого цвета. Но если смешать желтую и синию краску, то получается зеленый (вычитательное действие цветов). В цветооущении имеет значение кора больших полушарий. При мономолекулярном восприятии одним глазом происходит ощущение белого цвета.

Нарушения цветовосприятия:

Протанопия - слепота на красный цвет.

Дейтеранопия - слепота на зеленый цвет

Титранопия - слепота на синий цвет.

Восприятие пространства.

Острота зрения. По остротой зрения понимают восприятие деталей предметов. Зависит от велечины изображения, освещенности, светлости.

Две точки воспринимаются отдельно, если расстояние между этими точками будет не меньше углового расстояния в одну минуту.

При воспрятии пространства принято так же определять поле зрения. Глаз при фиксированном состоятии определеняет фиксированный точки пространства. Поле зрения определяют в градусах. Это дуга, разделенная на градусы.

Наружная - 90, снизу - 70, сверху 60, в сторону носа - 60.

Суммарное поле зрения будет получатся при суммировании двух глаз. Поле зрения меняется на разные цвета.

проводящие пути нервного анализатора:

1 - фотосенсорны клетки сетчатки - палочки и колбочки

2 - биолярные нейроциты сетчатки

3 - ганглиозные клетки сетчатки

Зрительный нерв

Зрительный перекрест

Зрительный тракт

Латеральное коленчатое тело

Зрительная лучистость

Кора затылочной доли гловного мозга

Ядро - кора затылочной доли в области шпорной борозды

Значение слова ФОТОРЕЦЕПТОРЫ в Большом российском энциклопедическом словаре

ФОТОРЕЦЕПТОРЫ

ФОТОРЕЦ́ЕПТОРЫ (от фото... и рецепторы), светочувствит. образования (молекулы пигментов, спец. клетки, органы), способные поглощать свет и индуцировать фотобиол. процессы в организме.

Большой российский энциклопедический словарь. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ФОТОРЕЦЕПТОРЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ
    (от фото... и рецепторы) , световоспринимающие. светочувствительные образования, способные в ответ на поглощение квантов света молекулами содержащихся в них …
  • ФОТОРЕЦЕПТОРЫ в Современном толковом словаре, БСЭ:
    (от фото … и рецепторы), светочувствительные образования (молекулы пигментов, специальные клетки, органы), способные поглощать свет и индуцировать фотобиологические процессы в …
  • ФОТОРЕЦЕПТОРЫ В ФИЗИОЛОГИИ ЧЕЛОВЕКА в Медицинских терминах:
    (фото- + рецепторы) см. Рецепторы зрительные …
  • РЕЦЕПТОРЫ в Энциклопедии Биология:
    , окончания чувствительных нервных волокон или специализированные клетки, преобразующие раздражения, воспринимаемые извне или из внутренней среды организма, в нервное возбуждение, …
  • ЗРЕНИЕ в Энциклопедии Биология:
    , способность организма воспринимать электромагнитное излучение из окружающей среды в т. н. видимом световом диапазоне от 300 до 800 нм. …
  • РЕЦЕПТОРЫ ЗРИТЕЛЬНЫЕ в Медицинских терминах:
    (син. фоторецепторы) Р. сетчатки, раздражение которых вызывает зрительное …
  • РЕЦЕПТИВНОЕ ПОЛЕ в Медицинских терминах:
    (франц. receptif воспринимающий, рецептивный; от лат. recipio, receptum брать, принимать) 1) зрительно-ганглиозного нейрона - участок сетчатки, в котором расположены фоторецепторы, …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (палочки) светочувствительные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых клеток обладают …
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большом энциклопедическом словаре:
    (колбочки) светочувствительные колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • ЭКСТЕРОЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    экстерорецепторы, обширная группа специализированных чувствительных образований, воспринимающих раздражения, действующие на организм из окружающей его внешней среды. Э. расположены на поверхности …
  • ЦВЕТОВОЙ КОНТРАСТ в Большой советской энциклопедии, БСЭ:
    контраст, 1) в цветовых измерениях (колориметрии) характеристика разницы между двумя цветностями х, у и х +D х, y + D …
  • ЦВЕТОВОЕ ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    зрение, цветное зрение, цветовосприятие, способность глаза человека и многих видов животных с дневной активностью различать цвета, т. е. ощущать отличия …
  • ФОТОРЕЦЕПЦИЯ в Большой советской энциклопедии, БСЭ:
    (от фото... и рецепция) , восприятие света одноклеточными организмами или специализированными образованиями (фоторецепторами), содержащими светочувствительные пигменты. Ф. v одно …
  • СОСУДИСТАЯ ОБОЛОЧКА в Большой советской энциклопедии, БСЭ:
    оболочка, хориоидея, соединительнотканная оболочка глаза, расположенная между сетчаткой и склерой; через неё метаболиты и кислород поступают из крови …
  • СЕТЧАТКА в Большой советской энциклопедии, БСЭ:
    сетчатая оболочка, ретина, внутренняя оболочка глаза, преобразующая световое раздражение в нервное возбуждение и осуществляющая первичную обработку зрительного сигнала. Выстилает …
  • РОДОПСИН в Большой советской энциклопедии, БСЭ:
    (от греч. rhodon - роза и opsis - зрение), зрительный пурпур, основной зрительный пигмент палочек сетчатки позвоночных (кроме некоторых рыб …
  • РЕЦЕПТОРЫ в Большой советской энциклопедии, БСЭ:
    (лат. receptor - принимающий, от recipio - принимаю, получаю), специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней …
  • ПАЛОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы сумеречного зрения. Расположены вместе с колбочковыми клетками в наружном слое …
  • НЕМАТОДЫ в Большой советской энциклопедии, БСЭ.
  • КОЛБОЧКОВЫЕ КЛЕТКИ в Большой советской энциклопедии, БСЭ:
    клетки, фоторецепторы глаза человека и позвоночных животных, функционирующие как элементы дневного светоощущения и обеспечивающие цветовое зрение; имеют колбообразную форму …
  • ЗРЕНИЕ в Большой советской энциклопедии, БСЭ:
    восприятие организмом внешнего мира, т. е. получение информации о нём, посредством улавливания специальными зрения органами отражаемого или излучаемого объектами света. …
  • ЖЁЛТОЕ ПЯТНО в Большой советской энциклопедии, БСЭ:
    пятно (macula lutea), место наибольшей остроты зрения в сетчатке глаза позвоночных животных и человека; имеет овальную форму, расположено против зрачка, …
  • ПАЛОЧКОВЫЕ
    П́АЛОЧКОВЫЕ КЛЕТКИ (палочки), светочувствит. клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных, обеспечивающие сумеречное зрение; в отличие от колбочковых …
  • КОЛБОЧКОВЫЕ в Большом российском энциклопедическом словаре:
    ЌОЛБОЧКОВЫЕ КЛЕТКИ (колбочки), светочувствит. колбообразные клетки (фоторецепторы) в сетчатке глаза человека и позвоночных животных; воспринимают дневной свет и обеспечивают цветовое …
  • РЕЦЕПТОРЫ в Новом словаре иностранных слов:
    (лат. recipere получать) концевые образования афферентных нервных волокон, воспринимающие раздражения из внешней (зкстероцепторы) или из внутренней (инте-роцепторы) среды организма …

Фоторецепторами являются палочки и колбочки, расположенные в наружном слое сетчатки. Палочки и колбочки сходны по своему строению, они состоят из четырех участков:

1. Наружный сегмент — светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной.

В палочках в каждом наружном сегменте содержится 600 — 1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше, они представляют собой складки плазматической мембраны.

Перетяжка — место, где наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

3. Внутренний сегмент — область активного метаболизма, заполненная митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента.

Здесь же расположено ядро.

4. Синаптическая область — место, где клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза.

Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает лучшую по сравнению с палочками остроту зрения. Горизонтальные клетки и амакриновые клетки связывают вместе некоторое число палочек или колбочек.

Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке. Эти клетки участвуют также в латеральном торможении.

Палочек в сетчатке содержится больше, чем колбочек — 120 млн и 6 — 7 млн соответственно.

Тонкие, вытянутые палочки размером 50х3 мкм равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненые конические колбочки размером 60х1,5 мкм. Так как в центральной ямке колбочки очень плотно упакованы (150 тыс. на кв.мм), этот участок отличается высокой остротой зрения. Палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не могут различать цвета и используются преимущественно в ночном зрении.

Клетки фоторецепторы:

колбочки

См. ФОТОРЕЦЕПТОРЫ ЖИВОТНЫХ

Фоторецепторы глаза

Описаны три вида фоторецепторов сетчатки глаза: палочки, колбочки и пигментосодержащие ганглиозные клетки.
Рецепторный отдел зрительного анализатора.

Раньше (в течение 200-летней истории исследования глаза) считалось, что рецепторный отдел зрительного анализатора (зрительной сенсорной системы) состоит из фоторецепторов двух типов, но теперь мы должны говорить о трёх типах фоторецепторов сетчатки:

1.Колбочки (их 6-7 млн): им нужна высокая освещенность, они имеют разную чувствительность к разному спектру (длине волны), обеспечивают цветовое зрение, содержат пигмент йодопсин.

2.Палочки (их 110-120 млн): они работают при слабой освещенности, имеют очень высокую чувствительность, но не различают цвета и дают не резкое изображение, содержат пигмент родопсин («зрительный пурпур»).

Эти два типа фоторецепторов расположены в рецепторном слое сетчатки глаза перпендикулярно к направлению светового луча (столбиками).

Причём они, можно сказать, неприлично развёрнуты к свету тылом.
Но относительно недавно в сетчатке были обнаружены фоторецепторы третьего типа:

3. Меланопсинсодержащие ганглиозные клетки сетчатки (МГКС) , или же intrinsically photosensitive retinal ganglion cells (ipRGCs): их всего 2% среди ганглиозных клеток сетчатки, они реагируют на освещённость, но не дают зрительных образов, содержат пигмент меланопсин, который сильно отличается от родопсина палочек и йодопсина колбочек.

Нервные пути от этих ганглиозных (ганглионарных) клеток ведут световое возбуждение от сетчатки к гипоталамусу тремя разными путями.

В палочках и колбочках содержатся светочувствительные пигменты. Оба пигмента имеют в своей основе видоизмененный витамин А.

Фоторецепторы: строение и функции. Зрительные пигменты. Строение сетчатки

Если не хватает витамина А, то страдает зрительное восприятие, т.к. не хватает «заготовок» для производства зрительного пигмента.
Палочки имеют максимум поглощения света в области 500 нм.

Колбочки же, в отличие от палочек, бывают трех типов:

1. «Синие» (коротковолновые — S) — 430-470 нм. Их 2% от общего числа колбочек.
2. «Зелёные» (средневолновые — M) – 500-530 нм. Их 32%.
3. «Красные» (длинноволновые — L) – 620-760 нм.

В каждом виде фоторецепторов используется свой тип зрительного пигмента. Интересно, что в 2000-е годы была обнаружена огромная вариабельность в соотношении красных и зелёных колбочек у разных людей. Стандартное соотношение, приведённое выше, составляет 1:2, но оно может достигать и 1:40, если сравнивать между собой разных людей. И тем не менее мозг компенсирует эти различия, и люди с разным соотношением красных и зелёных колбочек могут одинаково называть цвет с одной длиной волны.

Фотохимические процессы в глазу идут экономно: даже на ярком свету распадается только малая часть пигмента.

В палочках это всего 0,006%. В темноте пигменты восстанавливаются.

Родопсин – пигмент палочек.
Йодопсин – пигмент красных колбочек.

Йодопсин восстанавливается быстрее родопсина в 530 раз, поэтому при недостатке витамина А, в первую очередь страдает зрение палочек, или сумеречное зрение.
Слой фоторецепторов лежит на слое пигментных клеток, которые содержат пигмент фуксин.

Он поглощает свет и обеспечивает чёткость зрительного восприятия.
Отличительная черта фоторецепторов – это не деполяризация, а гиперполяризация в ответ на раздражение.
Можно сказать, что действие света как бы «повреждает» фоторецептор, разрушает его белок, и он перестает нормально работать, впадает в заторможенное состояние.

Фотохимическая «хрупкость» фоторецепторных клеток сетчатки и клеток пигментного эпителия к отоповреждению связана со следующими факторами:

1) присутствием в них эффективно поглощающих свет фотосенсибилизаторов,
2) достаточно высоким парциальным давлением кислорода,
3) наличием легко окисляющихся субстратов, в первую очередь полиненасыщенных жирных кислот в составе фосфолипидов.

Именно поэтому в ходе эволюции органов зрения позвоночных и беспозвоночных сформировалась достаточно надежная система защиты от опасности фотоповреждения (Островский, Федорович, 1987).

Эта система включает постоянное обновление светочувствительных наружных сегментов зрительных клеток, набор антиоксидантов и оптические среды глаза как светофильтры, где ключевую роль играет хрусталик.

Фоторецептор сочетает в своей структурно-функциональной организации два различных комплекса. Наружная часть фоторецепторной клетки, обращенная к пигментному эпителию, включает липопротеиновые структуры, содержащие зрительный пигмент - родопсин, поглощающий кванты света. Увеличение площади рецепторной мембраны в дисках наружного сегмента, где содержатся рецептивные белки, способствует увеличению чувствительности к свету. Противоположный полюс клетки оканчивается сложным синаптическим устройством, соответствующим сходным синапсам в нейронах, и передает информацию о восприятии зрительных сигналов следующим в цепи нервным клеткам. О структуре и функции фоторецепторов, специально в данной работе не изучавшихся, см. след. обзоры: Kolmer , Polyak , Walls , Pedler , Островский , Cohen, . Бабурина , Бабурина и Белтадзе , Stell , Винников , Rodieck , Лычаков , Подугольникова и Максимов , Говардовский , Бызов , Зак , Бочкин и Островский .

В рецептирующей клетке происходит преобразование световых, стимулов в рецепторный потенциал.

Под влиянием последнего изменяется выделение медиатора, который действует на нервное окончание сенсорного нейрона второго порядка и вызывает появление в нем постсинаптического потенциала.

Фоторецепторы изучаются более ста лет. Однако серьезные успехи в понимании структуры и функции палочек и колбочек связаны с несколькими последними десятилетиями, с появлением электронной микроскопии. Лишь на ультраструктурном уровне выяснилось, что мембранные диски палочек расположены стопками, отделенными от наружной плазматической мембраны, в колбочках же наружная плазматическая мембрана образует складки, соединяясь с каждым диском с одной стороны (рис. 2, а).

Стопки дисков постоянно обновляются, верхние стоики периодически перемещаются кнаружи, где фагоцитируются пигментным эпителием . Процесс отторжения дисков связан с суточным ритмом освещенности и у колбочек сетчатки некоторых рыб, рептилий, птиц происходит сразу после наступления темноты. У палочек многих позвоночных мембраны отторгаются в начале светового периода [Бабурина, Белтадзе, 1983].

Соединительная ножка , содержащая 9 пар фибрилл, связывает наружный и внутренний сегменты фоторецептора. В наружной части внутреннего сегмента тесно расположенное скопление митохондрий образует эллипсоид (рис. 2, а). Масляная капля, наблюдающаяся в колбочках некоторых позвоночных, видна среди митохондрий. Другими органоидами внутреннего сегмента являются параболоид (гранулы гликогена) и миоид.

Синаптические окончания палочек и колбочек образуют специализированные соединения с терминалями дендритов биполярных клеток, терминалями дендритов и аксонов горизонтальных клеток (рис. 2, б; 3).

Эти синапсы различаются по расположению и конструкции и могут быть инвагинирующими, полуинвагинирующими и поверхностными. Инвагинирующие синапсы формируются диадами и триадами, в которых центральный отросток обычно дендрит биполяра находится непосредственно под синаптической лентой, окруженной синаптическими пузырьками, а по бокам расположены терминали дендритов горизонтальных клеток (см. рис. 2, б; 3). В синаптическом окончании палочки наблюдаются лишь немногочисленные терминали дендритов нейронов второго порядка. Синаптические окончания колбочек, как правило, значительно сложнее, крупнее и включают множество триад, группирующихся вокруг синаптических лент. Детали синаптических соединений биполяров и горизонтальных клеток с терминалями фоторецепторов существенно отличаются у различных позвоночных.

Фоторецепторы связаны между собой, электронно-микроскопическими исследованиями между ними выявлены щелевые контакты. Они обнаружены между красными палочками у жабы , в сетчатке аксолотля и млекопитающих . Морфология щелевых контактов между фоторецепторами существенно отличается у различных видов позвоночных [Давыдова, 1983] по уровню расположения контактов, по видам рецепторов, между которыми имеются связи, по их протяженности и т. п. Установлено, что связанные между собой контактами фоторецепторы одинакового типа, например колбочки с одинаковой спектральной чувствительностью или палочки, обнаруживают и электрическую связь [Бызов, 1984]. Хотя, как правило, контакты наблюдаются между рецепторами одинакового типа, обнаружены связи и между рецепторами различных типов. Например, в сетчатке лягушки (Rana pipiens) на сериальных срезах у красной палочки найдено три контакта - с другой красной палочкой, с одиночной колбочкой и с основным членом двойной колбочки. Одиночная колбочка контактирует с тремя красными палочками . Щелевые контакты обнаружены между рецепторами разных типов и в сетчатке млекопитающего- кошки; например, тонкий длинный отросток колбочковой синаптической ножки образует связь со сферулой палочки . Авторы этой находки считают, что взаимодействие палочковой к колбочковой систем в некоторых преимущественно палочковых сетчатках у млекопитающих происходит уже на начальном уровне обработки зрительных сигналов.


Световая микроскопия позволяет наблюдать даже на уровне фоторецепторов более сложное строение у низших позвоночных по сравнению с млекопитающими. У многих видов позвоночных наблюдаются не только одиночные колбочки, но и двойные (рис. 1, А, Б), отсутствующие у млекопитающих (рис. 1, В). У птиц и черепах, как упомянуто выше, обнаружено не менее шести различных типов колбочек. По мнению Л. В. Зуевой , система цветового зрения рептилий и птиц состоит из четырех или даже больше приемников и, возможно, превосходит по способностям трехкомпонентную систему цветового зрения человека.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии