За какой медициной стоит будущее. Лечение церебральных нарушений. Человек, как генератор энергии: кардиостимуляторы будущего

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Процесс развития медицины с каждым годом ускоряется, и 2017 год полон технологий, открывающих новые перспективы лечения людей. «Футурист» составил подборку наиболее актуальных и значимых из них.

Робототехника и автоматизация постепенно преображают то, как врачи выполняют и хирургические операции, и терапевтическое лечение. Новые системы используют достижения программного обеспечения, миниатюризации и робототехники, позволяя проводить минимально инвазивные операции на самых деликатных частях анатомии человека. С каждым годом роботы выполняют все более сложные задачи с невозможной для людей точностью.

Новая хирургическая система da Vinci X

Успешно внедренные модели роботов-хирургов da Vinci продолжают совершенствовать. Новый представитель линейки предоставит хирургам и больницам доступ к передовым технологиям роботизированной хирургии по более низкой цене. Intuitive Surgical, компания-производитель робота, мировой лидер в области роботизированной минимально-инвазивной хирургии, объявила, что ее новая хирургическая система da Vinci X уже получила сертификат соответствия стандартам (CE Mark) в Европе.

«За последний 21 год Intuitive Surgical стала первопроходцем в области роботизированной хирургии, и мы продолжаем лидировать в разработке и выводе на рынок инновационных технологий, ориентированных на результат», - сказал доктор Гари Гутарт ( Gary Guthart), генеральный директор Intuitive Surgical. - «Наши хирурги, больницы и клиенты по всему миру рассказали, что операции с использованием роботизированных технологий имеют огромное значение для их пациентов, подчеркивая важность предоставления выбора с клинической, технологической и стоимостной точек зрения».

Роботизированные системы da Vinci разработаны, чтобы помочь хирургам осуществлять минимально инвазивную хирургию. Однако они не запрограммированы на самостоятельное проведение хирургических операций. Все процедуры выполняются хирургом, который контролирует систему, Da Vinci же обеспечивает 3D-изображение высокой четкости, роботизированную и компьютерную помощь.

Робот-хирург, способный провести операцию на мозг в 50 раз быстрее человека

Хирургия головного мозга требует крайней точности, один промах может повлечь гибель пациента. Даже у представителей одной из самых квалифицированных профессий в мире человеческий фактор может стать причиной смертельной ошибки. Исследователи Университета штата Юта надеются сократить влияние человеческого фактора: они полагают, что их операционный хирург способен выполнять сложные операции на мозге, сократив время, необходимое для разрезания черепа, с двух часов до двух с половиной минут. Таким образом, робот сократит время, необходимое для сложной процедуры, в 50 раз.

Аппарат двигается вокруг уязвимых участков черепа по данным, получаемым при сканировании компьютерной томографией и передаваемым в программное обеспечение робота. Компьютерная томография показывает программисту расположение нервов или вен, которых должен избегать робот.

Помимо очевидных преимуществ механизма машины, она также в долгосрочной перспективе может сэкономить деньги за счет более короткого времени операции. Дополнительным плюсом является уменьшение времени пребывания пациента под наркозом, что также делает процедуру более безопасной.

Терапевтические наноматериалы

Наноматериалы - это устройства, которые настолько малы, что их можно измерить только в молекулярном масштабе. Эти микроскопические машины бывают разных форм и могут быть изготовлены из различных материалов, от золота до синтетических полимеров, в зависимости от их предполагаемых функций. Фактически, более 50 лекарств на основе наночастиц уже одобрены Управлением по контролю за продуктами и лекарствами, такими как Abraxane от рака молочной железы и Doxil от рака яичников. В настоящее время эти аппараты используются для выборочной доставки токсичной химиотерапии непосредственно в раковые опухоли, что способствует снижению доз, необходимых для их уничтожения, и риска серьезных побочных эффектов для пациента. В будущем нанотерапевтические средства могут быть разработаны для уничтожения самих раковых клеток.

Ради этой цели исследователи разработали новую платформу неинвазивного метода визуализации действия наночастиц на рак у мышей (в реальном времени), что поможет исследователям улучшить их до тестирования на людях.

«Это важный шаг вперед в этой области», - заявил главный исследователь Александр Стег (Alexander Stegh). - «В нанотехнологической области отсутствует тщательная оптимизация, которую мы наблюдаем при разработке обычных лекарств, и мы хотели бы изменить это. Система, которую мы здесь разработали, действительно позволяет нам поддерживать эти усилия».

Команда Стега использовала новую платформу для тестирования терапевтических наноматериалов, которые они разрабатывали, - сферических нуклеиновых кислот (SNAs). Они могут убить неизлечимый в настоящее время тип рака мозга, нацеливаясь на определенный ген. Система визуализации помогла установить, что наночастицы оказывают наибольший эффект между 24 и 48 часами после введения, и, следовательно, определить наилучшее время для введения дополнительной химиотерапии.

Искусственный интеллект

Еще одна малозаметная технологическая новинка в медицине включает использование искусственного интеллекта (ИИ). IBM Watson, суперкомпьютер компании IBM, уже продемонстрировала острый диагностический взгляд, а машинное обучение и программы глубокого обучения были использованы для прогнозирования всего, начиная с предположительного момента смерти пациента до следующей крупной вспышки заболевания.

Можно ожидать, что применение ИИ в медицине будет только расти. Особенно в этом году, когда необходимость отбирать и ассимилировать огромное количество медицинских данных - на индивидуальной или крупномасштабной, общественной основе - станет критической. Между тем страх, что потенциально несовершенные программы машинного обучения вытеснят человеческие ресурсы, также станет более реальным.

Редактирование генов

Революционная технология редактирования генов CRISPR/Cas-9 стала уникальным прорывом в области биологии. Она предлагает преобразование ее из медленной, неточной науки в нечто, близкое к физическим наукам. Будущее технологии редактирования генов открыто самым невероятным догадкам, несмотря на легальные запреты во многих странах и этические вопросы, связанные с этим.

Более широкое использование технологии на людях уже неизбежно. Возможно, именно 2017 год, станет годом, когда это случится в первый раз. Наиболее вероятны широкие испытания редактирования генов в борьбе с раковыми заболеваниями, или использование CRISPR для искоренения патогенных человеческих ДНК-вирусов, таких как ВИЧ или герпес.

Но ожидаются также пассивные меры, такие как простое изучение прогресса болезни Альцгеймера и других нейродегенеративных заболеваний или даже немедицинских сельскохозяйственных и промышленных применений этой технологии. Осознание механизмов действия последовательностей ДНК позволит ученым решать проблемы во всех областях биологии, от лечения болезней человека, до понимания того, почему исчезают некоторые виды живых существ.

Контроль инсулин-продуцирующих клеток на смартфоне

Для людей с диабетом инъекции инсулина являются неотъемлемой частью жизни. Однако новое устройство, созданное китайскими исследователями и проверенное на мышах, может избавить их от необходимости постоянных уколов. Команда имплантировала клетки, продуцирующие инсулин, мышам с диабетом, а затем использовала приложение на смартфоне для «включения» этих клеток. Через два часа устройство, которое его создатели называют HydrogeLED, стабилизировало уровень сахара в крови у мышей. Гидрогелевая капсула размером с монету. Она вживляется под кожу животным и состоит из инсулин-продуцирующих клеток и светодиодных ламп. Клетки вырабатывают инсулин только тогда, когда включены светодиоды.

Уровень сахара в крови можно контролировать с помощью отдельного Bluetooth-глюкометра, который подает сигнал в приложение, когда он поднимается слишком высоко. Затем приложение включает светодиоды, вызывая выработку инсулина. Пользователь может вручную контролировать яркость светодиодов и продолжительность их работы, таким образом регулируя, сколько инсулина попадает в кровь.

Однако пока использование приложения на людях невозможно в связи с некоторыми проблемами. Мыши, на которых проверялась работы устройства, заключены в катушку электромагнитного поля, которая очень похожа на интеллектуальный домашний хаб - таким образом приложение может взаимодействовать с сервером. Светодиоды питаются от самого электромагнитного поля, а значит, вся система не сможет работать вне катушки. Кроме того, на данный момент уровень сахара в крови все еще проверяется с помощью иглы.

В будущих версиях HydrogeLED эти проблемы будут решены. Автор исследования Хайфэн Е планирует запустить 24-часовой мониторинг уровня сахара в крови встроенным глюкометром, который при необходимости сможет автоматически запускать светодиоды.

Очевидно, что общество движется вперёд семимильными шагами, что способствует развитию медицинских технологий. Если мы попытаемся заглянуть в ближайшее будущее, перед нами предстанет мир новых и продвинутых технологий, которые ещё вчера сложно было даже вообразить.

1. Конструктор ДНК

ДНК служит идеальным носителем, который способен содержать огромное количество информации. Структура ДНК постоянно развивается и изменяется, а её молекулы часто называют строительными блоками живых организмов.

Для исследователей Гарвардского университета эта фраза имеет гораздо больше смысла, чем для простого человека - учёные действительно используют ДНК в качестве строительных блоков для разработки различных структур и систем.

Используя этот метод, учёные закодировали в одной молекуле ДНК 284 страницы книги. Они смогли записать эту информацию благодаря переводу данных сначала в двоичный код, а затем переведя цифры от единицы до нуля в четверичную систему счисления ДНК - A, T, G и C. В результате оказалось, что эти данные могут быть легко считаны, хотя этот процесс пока занимает довольно много времени. Но это пока.

2. Приборы поддержания жизнедеятельности

Такие приборы, как кардиостимуляторы, регулирующие ритм сердца, использует около 700 000 человек в мире. Минусом является то, что они могут служить всего около семи лет, а после этого оборудование подлежит замене. Это не просто сложная, но и дорогостоящая хирургическая процедура. Учёные из университета штата Мичиган решили эту проблему раз и навсегда - они разработали совершенно новый кардиостимулятор, работающий за счёт сокращения сердечной мышцы.

После проведения экспериментов и тестов доктор Амин Карами заявил, что все они дали положительные результаты. По его словам, следующим этапом в испытании нового прибора должна стать имплантация аппарата в живое человеческое сердце. Если технология сработает и покажет положительный результат, она сможет произвести революцию не только в медицинской сфере, но и в промышленной. Этот механизм настолько чувствителен, что может производить электроэнергию при любой частоте пульса.

3. Лечение церебральных нарушений

Мозг - чувствительный орган, повреждение которого может иметь долгосрочные последствия. Для людей с черепно-мозговой травмой комплексная реабилитация, пожалуй - единственная надежда вернуться к нормальной жизни. Но теперь есть альтернативный метод.

Ваш язык связан с ЦНС посредством тысячи нервных окончаний, некоторые из которых ведут прямо к нейронам мозга. Портативные нейростимуляторы (PoNS) стимулируют определённые нервные области языка и посредством этого аппарата мозг получает сигналы для восстановления повреждённых зон. Пациенты, пользующиеся системой, показали значительное улучшение буквально через неделю.

Кроме черепно-мозговых травм система PoNS может быть использована для лечения таких заболеваний, как болезнь Паркинсона, алкоголизм, инсульт, рассеянный склероз и пр.

4. Напечатанные кости

При помощи 3D-принтера исследователи из университета штата Вашингтон создали искусственный материал, обладающий свойствами кости. Эта «модель» может быть пересажена в человеческое тело, пока срастается настоящая кость, а затем она расщепляется и выводится, не причиняя вреда организму.

Главной проблемой был выбор материала для создания кости. Спустя время учёные создали формулу, в которую вошёл цинк, кремний, фосфат и кальций. Смесь опробовали и пришли к выводу, что с добавлением стволовых клеток она будет работать гораздо эффективней.

Для исследования использовали принтер ProMetal 3D. Работает он почти так же, как обычный принтер. В него нужно просто засыпать смесь и распечатать нужную кость.

Основным преимуществом этой технологии является то, что теперь, при правильном сочетании составляющих биологического материала, можно получить любые ткани, даже настоящие органы, с помощью принтера.

5. Пыльца как способ вакцинации

Цветочная пыльца является одним из наиболее распространенных аллергенов в мире. Её структура настолько жёсткая и устойчивая к влаге, что попадая в организм, она без труда пробирается в пищеварительную систему человека. Когда-то же самое происходит при пероральной вакцинации, в организме усваивается далеко не всё количество введённого вещества, так как на него воздействуют соки пищеварительного тракта.

Учёные из Техасского университета решили изучить свойства цветочной пыльцы и разработать вакцину с её использованием. Глава исследования Харвиндер Гилл преодолел основной недостаток использования пыльцы - он удалил с её поверхности все аллергены. Эта технология может оставить далеко позади инъекционный метод вакцинации и стать поворотным событием в медицине.

6. Электронное нижнее бельё

Несмотря на то, что это звучит забавно, нижнее бельё может спасти тысячи жизней. У пациентов, лежащих в коме или без сознания на протяжении нескольких недель и месяцев, могут появиться пролежни - омертвелые ткани, возникающие в результате постоянного давления. Пролежни даже могут иметь смертельные последствия - примерно 60 000 человек ежегодно умирают от инфекций из-за них.

Канадский учёный Шон Дюкелоу смог разработать электронные трусы под названием «Smart-E-Pants». В белье находятся специальные устройства, которые каждые десять минут посылают электрический импульс, заставляя мышцы сокращаться. Эффект от приспособления такой же, как если бы пациент самостоятельно упражнялся. Посредством воздействия на мышцы, электронное нижнее бельё может навсегда решить эту проблему.

7. Клетки мозга из мочи

Китайские биологи из Института Биомедицины и Здоровья в Гуанчжоу, используя человеческую урину, смогли создать стволовые клетки. Основным преимуществом метода является то, что клетки, созданные из мочи, не провоцируют раковых заболеваний, в то время, как эмбриональные стволовые клетки, применяемые в медицине сегодня, к сожалению, имеют такой побочный эффект - после их пересадки нередко начинают развиваться опухоли. Трансплантация клеток на основе урины не приводила ни к каким нежелательным новообразованиям.

Исследователи считают, что этот метод более доступен и практичен для создания стволовых клеток. Нейроны, полученные из мочи, могут использоваться для лечения дегенеративных заболеваний нервной системы.

8. Гель, имитирующий живые клетки

Множество медицинских исследований посвящены попыткам воссоздания человеческих тканей на основе различных материалов. В будущем, при успешном развитии этой технологии, можно обеспечить здоровую жизнь всему человечеству: если, например, один из органов перестал функционировать, его можно вырастить в лабораторных условиях и заменить.

Сейчас учёные разрабатывают гель, имитирующий деятельность живых клеток. Материал формируется в пучки шириной 7,5 миллиардных частей метра, для сравнения, это примерно в четыре раза шире двойной спирали ДНК. Как известно, клетки имеют собственный тип скелета - цитоскелет, состоящий из белков. Синтетический гель заменяет повреждённые ткани в каркасе клетки, останавливая распространения инфекций и бактерий.

9. Магнитная левитация

Ткани искусственного лёгкого были выращены благодаря магнитной левитации. Несмотря на то, что это звучит фантастически, группа учёных под руководством Глуко Соуза в 2010-м году наглядно продемонстрировала, что это возможно. Исследователи поставили цель в лабораторных условиях создать бронхиолу. Для эксперимента использовались крохотные магниты, вводившиеся в клетки.

В результате были получены самые реалистичные синтетически-выращенные ткани лёгкого. Ткань, выращенная благодаря магнитной левитации, может стать прорывом в медицине. Сейчас работа над совершенствованием технологии продолжается.

10. Гель от кровотечений

Небольшая группа учёных потрясла мир науки инновационным открытием: Джо Ландолино и Исаак Миллер смогли создать гель, останавливающий кровотечения любой сложности. Гель работает, герметично закупоривая рану.

Гель от кровотечений создаёт легко усваиваемую синтетическую ткань, которая помогает клеткам срастись. В одном из экспериментов учёные использовали кусок свинины с подведённой трубкой с кровью. Они разрезали мясо, а когда из «раны» потекла жидкость, нанесли на разрез гель, и «кровотечение» прекратилось в течение нескольких секунд. В следующем тесте Ландолино применял гель на сонной артерии крысы. Эксперимент прошёл так же успешно.

Если эту разработку в скором будущем начнут использовать в хирургической медицине, она могла бы сохранить жизнь многим людям.

Что нас ждет впереди? Какие цели ставят перед собой ученые и медики, и станем ли мы свидетелями настоящей революции в медицине?

Эра нулевых годов ознаменовалась большим рывком в информационных технологиях. Человечество шагнуло далеко вперед в вопросах, касающихся информатизации и роботизации практически всех сфер человеческой жизнедеятельности. В частности большие перемены ожидаются в медицине, а некоторые фундаментальные новшества уже внедрены и успешно себя зарекомендовали. Например, за последние годы все активнее стали внедряться лазерные технологии и телемедицина, когда врач может консультировать своих пациентов, находясь за несколько тысяч километров от них. Все это доступно уже сегодня, но каков прогноз на «завтра»?

Наноботы вместо хирургов

В последнее время о нанотехнологиях не говорит только ленивый. В мире науки и медицины нанотехнологии, это, пожалуй, самая популярная тема. И эта популярность не случайна. Ведь наночастицы обладают настолько фантастическими свойствами, что весь научный мир ждет не дождется, когда наноструктуры основательно внедрятся в нашу жизнь. В частности, в будущем предрекают появление миниатюрных роботов (наноботы), которые будут осуществлять «ремонт» всего организма. Схема будет выглядеть примерно так: больной выпивает некую смесь с наноботами, и те всасываются в кровеносное русло. Либо нанороботы будут вводиться внутривенно. Путешествуя по мельчайшим кровеносным сосудам, наноботы будут устранять все неполадки. Планируется даже вмешательство в ДНК. С помощью этих наночастиц можно будет исправлять последовательности, и предотвращать мутации, которые приводят к болезням.

Выращивание органов

Население нашей матушки-планеты уже перевалило за 7 миллиардов. С ростом числа населения растет и количество заболеваний. Если учесть еще и экологические факторы, то уровень заболеваемости населения растет и в процентном отношении. Часто при терминальных стадиях болезни, когда орган спасти уже не удается, то врачи прибегают к трансплантации. Однако доноров на всех не хватает, и к тому же процесс трансплантации «живого» органа – это процесс весьма трудоемкий и дорогостоящий. Здесь ставка делается на стволовые клетки. Сегодня в лабораториях успешно выращиваются отдельные ткани, и по мнение авторитетных ученых недалек тот час, когда человеку можно будет за умеренную цену заменить больной орган на вновь выращенный из его же отобранных клеток.

Человек-киборг

Если медицине и не удастся пока качественно выращивать органы, то есть и второй вариант – киборгизация человека . К примеру, остановившееся сердце человека можно будет заменить на более стойкий к износу аналог. Стоит отметить, что в 2011 году одному из американских пациентов полностью удалили сердце и поставили вместо него два ротора, качающих кровь.

Относительно давно уже на сердце ставят искусственные стимуляторы, и основной проблемой таких устройств было то, что их нужно было менять через каждые несколько лет. Сегодня же израильскими учеными разработаны стимуляторы (и не только стимуляторы, но и другие искусственные приспособления), которые питаются биотоками человеческого тела, возникающими от мышечного сокращения.

Диагностика будущего

Особое место в медицине занимает диагностика, а точнее – ранняя диагностика. На сегодняшний день неизлечимые формы множества заболеваний, в частности онкологических, развиваются из-за позднего обращения пациента к врачу, либо из-за несовершенства современной диагностической аппаратуры.

Мир могут лишить будущих гениев

Как пишет The Guardian со ссылкой на новую книгу британского автора Грэма Фармелло, стали известны новые подробности жизни великого британского физика Поля Дирака. Подозревают, что он был болен аутизмом. Многие медики, в частности в

Планируется создание специальных миниатюрных датчиков, которые будут вшиваться в одежду человека, либо вживляться под кожу. Такие биосенсорные механизмы будут постоянно отражать уровень сахара в крови, давление, частоту сердечных сокращений, биохимию крови, уровень гормонов и много других параметров, по которым врач может заподозрить начало того или иного нарушения. Данные будут передаваться в медицинское учреждение, и если вашему лечащему врачу не понравятся ваши анализы, то он вас вызовет на прием. Таким образом, отпадет необходимость в обязательных медицинских плановых осмотрах. За человеческим телом будут постоянно следить специальные устройства, не давая возможности заболеванию усугубиться.

Сложности

В идеале, медицина ставит перед собой очень амбициозную задачу: победить все болезни. Однако, пока ее достижения в этом весьма скромны, и говорить о каких-либо датах в будущем пока еще рано. Трудность состоит в том, что учеными пока еще не открыта «суть» живого. Изначально ученым предстоит создать теоретическую биологию, для того чтобы можно было предугадать «поведение» жизни, а также точно рассчитать все ее параметры. К примеру, благодаря теоретической физике даже школьник может рассчитать места, куда приземлиться стальной шарик определенной массы, брошенный с определенной силой. К сожалению, как поведет себя живой организм при одних и тех же внешних условиях, неизвестно никому. Можно лишь приблизительно догадываться, но такой подход не приемлем в лечении пациентов.

Михаил Хецуриани

" попытались разобраться, каким из этих прогнозов можно доверять, а каким - нет.


Предисловие

Недавно у нас была лекция по анатомии, где наш многоуважаемый профессор Е. С. Околокулак рассказывал о центральной нервной системе - конечный мозг и т.д. Неожиданно для нас он заявил, что подготовил мультфильм , и мы переглянулись, мол, зачем нам, таким серьезным людям, мультфильмы. Это было, конечно же, шуткой, - а имел он в виду новейшую программу, которая была недавно создана совместно медиками и программистами. Он говорил о 3D-презентации структур мозга, как всех вместе, так и по отдельности. Но я не был сильно удивлен этим, учитывая то, что я часами просматриваю фантастические фильмы и тонны видео с Ютуба на данную тематику, и то, что с таким восторгам показывал нам наш профессор, мне казалось само собой разумеющимся. Конечно, на самом деле, на разработку такой программы ушли годы, и программа эта никому не передается, а хранится чуть ли ни в сейфе профессора. Но не в этом суть.

Профессор плавным образом перешел к теме будущего медицины , и высказал свое мнение, коснувшись, правда, только одной сферы. Он сказал, что в скором времени мы будем крутить 3D-модель мозга в воздухе, совсем как в фантастических фильмах , и в этом нет никакого сомнения. Такой солидный и серьезный профессор говорил про такие вещи, и мы не могли в этом ни на секунду усомниться. Тем более что мы живем в такое время. Потом он сказал, что несколько лет назад 3D-сканирование мозга было фантастикой, а теперь многие врачи в практике спокойно могут послойно смотреть структуры мозга.


3D-проецирование с возможностью управления жестами

Это первое, что я хочу описать, так как наш профессор именно этот прогноз и выказал в своей лекции. На самом деле, на практике уже сегодня 3D-сканирование применяется, и на сегодняшний день мы можем просканировать тот же мозг, а потом крутить его, увеличивать, послойно "резать", и просматривать, какая патология в той или иной зоне. Но! Все это мы делаем посредством мышки, клавиатуры, то есть через экран монитора. А что, если в ближайшем будущем мы сможем проецировать 3D-модель мозга в реальном времени в воздух, и крутить его в разные стороны, увеличивать, "резать" его прямо в воздухе теми же жестами? Да, это будет возможно в будущем! Доказательством этому является то, что ученые уже начали работать в этом направлении, и на сегодняшний день мы можем управлять жестами компьютером, но все так же на экране, то есть, проецируя картину на поверхность (по методу "Кинекта "). В ближайшее время, впрочем, такие сенсоры усовершенствуются, и мы сможем двигать моделями прямо в воздухе, совсем как Тони Старк из фильма "Железный Человек". На достижение этой цели уйдет, я думаю, примерно 10-15 лет, не больше. Это не сбудется лишь в том случае, если сами врачи посчитают это неудобным.


Одежда-сенсор

Про это даже не стоит дискутировать, потому что уже сейчас в Индии придумали такую одежду, которая регистрирует разные показатели организма. Её будут покупать те, кто нуждается в сканировании функций своего организма в определенные промежутки времени, и при этом не хочет тратить время на обследование в больницах. Бесценна будет она и в спорте.

В режиме реального времени будут отображаться все функции организма, начиная от пульса, артериального давления и заканчивая общим тонусом мышц. Информация будет поступать на смартфон , ну а оттуда синхронизироваться с компьютером дома, или на устройствах врачей. Так будет уже через 10-15 лет.


3D-принтеры органов человека

Конечно же, я не мог про это не упомянуть. Нашумевшая тема именно в наш переходной период времени - 3D-принтеры . Уже не в диковинку 3D-принтеры , которые производят фигурки и детальки из пластика, из которых можно собрать даже оружие. Теперь ученые из нескольких стран занимаются тем, что выращивают живые органы путем распечатки их на 3D-биопринтерах. Они "распечатали" почку, но оказалось, что почка эта функционирует только 4 месяца - и все. На данном этапе эта проблема решается. Решат её через 5-10 лет.


Успехи в нейротехнологии

Именно это направление заинтересовало меня больше всех, потому что мозг и вообще нервная система - это плеяда таинственных структур, которые не так сильно изучены человеком. У одного, к примеру, вырезали полмозга и даже больше, а он вполне себе обычный человек, со среднестатистическим умом; другому вырезали малюсенький кусочек некротизированной ткани - и он стал овощем. На этом поприще есть много неизученного, и над этим сегодня работают многие ученые.

Так как я отучился на фельдшера скорой помощи, не упомянуть про это я тоже не мог. Несколько возможных прогнозов:

  • "Обратимая смерть", которая даст время для спасения пострадавшего. Например, ввести крио-раствор вместо крови, пока человека везут в реанимацию.
  • Получение достоверной и нужной информации о повреждениях сразу со смартфона или напрямую с одежды пострадавшего.
  • Доставка кислорода в любые поврежденные части тела, особенно в мозг, более быстрым способом - опять же, через специальный раствор.
  • Приспособления для поддержания активности мозга , если даже тело перестало качать кровь. Что-то вроде каски, которая оборудована проводами и трубочками с заменителями крови.
  • В реанимационной, за счет технологий, оборудованных по последнему слову техники, реаниматологи не будут терять те драгоценные минуты, от которых многое зависит.

Из-за меньшего внимания к реаниматологии, чем к другим отраслям медицины, со стороны исследователей и правительств, на реализацию этого прогноза может понадобиться и 20 лет.


И последний прогноз - это всеобщая компьютеризация и интеграция всех структур медицины

Инновации коснутся непосредственно всех структур медицины. Даже таких простых, как выписка лекарств больному, заполнение его истории болезни , получение информации - о нем, о его болезнях, которыми он болел до этого, о его наследственных заболеваниях , с их вероятностью... Все это будет синхронизироваться в центральных серверах и подаваться на планшеты, которые будут даваться каждому доктору, когда они начнут работу. Им останется только приложить электронную карточку пациента к девайсу. Если нет карточки - не беда, всегда можно заполнить все, даже не печатая, а разговаривая (голосовое управление). У нас, правда, это всё будет лет через 50, а то и 80.

В итоге хочется сказать, что все это возможно лишь в том случае, если мы не будем себя ограничивать. Как сказал наш профессор: "Десять лет назад все, что мы видим сейчас, было лишь фантастикой и плодом воображения писателей и режиссеров, а сейчас, - все это окружает нас. И нет сомнения в том, что то, что показывают сейчас в фантастических фильмах и пишут в книгах - сбудется в ближайшие 5-10 лет". Ну, может и не за 5-10 лет, но в ближайшие 50-80 лет должно сбыться точно. Я в это верю.

А вы верите в это?

Ибрагим САЛАМОВ

На завершившемся в Сочи XIX Всемирном фестивале молодежи и студентов особое внимание уделили здравоохранению

Российские делегаты и гости фестиваля, прибывшие из 150 стран, смогли принять участие в дискуссионно-образовательной программе «Экология и здоровье», организованной Минздравом России совместно с Всероссийским общественным движением «Волонтеры-медики» при участии Всемирной организации здравоохранения. Это событие еще раз показало, что молодежная тема, тема подготовки нового поколения врачей, грамотных, целеустремленных, способных работать в медицине завтрашнего дня, - прочно заняла свое место в фокусе внимания руководителей отечественного здравоохранения.

Сегодня между различными профессиональными сферами развернулась настоящая борьба за молодых людей, выбирающих свой жизненный путь. Здравоохранение, сфера ИТ, различные инженерные и гуманитарные направления пытаются привлечь к себе внимание старших школьников и их родителей. Все понимают: энергия, талант и творчество нового поколения - залог прогресса уже в самом ближайшем будущем.

Аргументы отечественной медицины в этом споре очень весомы и не остаются без должной оценки в обществе. Прежде всего - это обновленная и проходящая сегодня через серьезные трансформации система профессионального медицинского образования. В последние годы в ней произошло несколько революционных событий. Например, были внедрены новые - третьего поколения - стандарты обучения будущих врачей. Они принципиально ориентированы на практику и предусматривают возможность регулярной модернизации программы для включения в нее новых методик и медицинских технологий диагностики и лечения. В прошлом году обучение по новым стандартам первыми завершили стоматологи и фармацевты, в этом году - студенты всех медицинских специальностей.

Затем всех выпускников медвузов, прошедших обучение по новым программам, ждала впервые появившаяся в нашей стране система допуска врачей и фармацевтов к профессиональной деятельности - аккредитация. Первичная аккредитация выпускников проводится уже второй год. Она включает в себя теоретический экзамен и практические испытания. Причем оценивают квалификацию выпускников не только их собственные преподаватели, но и практикующие врачи и руководители медицинских учреждений - их будущие работодатели. Таким образом, медицинское образование и реальная врачебная практика получают постоянно действующий механизм обратной связи. В Минздраве называют это одним из самых главных шагов к саморегуляции профессионального сообщества. Выпускники, прошедшие первичную аккредитацию, получают допуск к работе на должностях «стартового уровня» даже без интернатуры.

Еще одно важное нововведение - новый порядок поступления в ординатуру, разработанный совместно с вузовским сообществом и утвержденный приказом Минздрава. Если раньше вопрос о том, брать студента в ординатуру или нет, решал ректорат конкретного вуза, то теперь процесс будет осуществляться на основании единых для всей страны условий, что сделает процедуру более прозрачной и беспристрастной. Если говорить конкретно, то в качестве вступительного экзамена студенты теперь проходят теоретическую часть аккредитационного испытания, что исключает предвзятость (база вопросов для аккредитации едина и размещена в Интернете, а принимает экзамен та же многосторонняя независимая комиссия). Кроме того, при поступлении в ординатуру принимаются во внимание баллы за достижения во время учебы, которые также рассчитываются по единой системе (например, за получение стипендий и грантов, красный диплом и пр.). Унификация дает возможность выпускнику поступить в ординатуру любого медицинского вуза России по единым правилам.

С завершением обучения в вузе образование врачей теперь не заканчивается - в стране начала работу система непрерывного медицинского образования, использующая современные информационные технологии, возможности удаленного обучения и стажировок в ведущих клиниках и институтах. Постепенно в эту систему будет включен весь врачебный корпус страны, а полученные в ней знания необходимо будет подтверждать в ходе регулярных - раз в пять лет - реаккредитаций.

Что же касается студентов, то для них образовательный процесс, ограниченный стенами аудиторий, - хоть и важнейшая, но еще не достаточная составляющая полноценного профессионального образования. Очень важна атмосфера, в которую погружаются будущие врачи на все время своего обучения. Для создания творческой, вдохновляющей на достижения атмосферы необходимо, чтобы молодые люди могли общаться между собой на профессиональные темы, обмениваться идеями, расширять кругозор, чтобы они имели доступ к профессионалам отрасли... Поэтому в стране сегодня существует множество мероприятий, которые становятся площадками для такого общения между студентами, молодыми специалистами, корифеями врачебного дела и научными светилами. Например, начиная с 2012 года проходит ежегодный Форум студентов медицинских и фармацевтических вузов. Два года назад на нем был принят этический кодекс студентов медицинских и фармацевтических учебных заведений, который был распространен во всех высших образовательных медучреждениях страны.

В прошлом году в рамках Всероссийского молодежного образовательного форума «Территория смыслов» впервые проводилась смена для молодых ученых и преподавателей в сфере здравоохранения. Перед участниками выступили министр Вероника Скворцова и другие руководители отрасли. Участники форума разработали свою программу и план развития здравоохранения России, продумали механизмы его модернизации на муниципальном, региональном и федеральном уровнях. Победителем конкурса проектов стала разработка интернет-портала и мобильного приложения, содержащих справочную информацию, полезную молодым врачам в начале их профессиональной деятельности.

На Всемирном фестивале молодежи и студентов в рамках дискуссионно-образовательной программы «Экология и здоровье» обсуждались глобальные вопросы здравоохранения и медицинской этики, лекции читали известные представители научного сообщества и организаторы медицины. Делегатам рассказали о возможностях сферы охраны здоровья - от арктической до космической медицины, от оказания медицинской помощи в местах военных действий до амбулаторных отделений поликлиник. На симуляционных тренингах участники фестиваля «примеряли роль» директоров клиник или членов делегаций ВОЗ и, например, пытались остановить надвигающуюся эпидемию. Да что там - у них была возможность даже прочесть чужие мысли с помощью компьютера! Конкурс молодежных проектов был посвящен наиболее актуальным вопросам современного здравоохранения: от работы с «большими данными» до подготовки профессионалов для медицины завтрашнего дня. «Этот фестиваль не только помогает в налаживании международных связей, обмене знаниями и технологиями, - считает Вероника Скворцова, - но и способствует укреплению престижа профессии медицинского работника, демонстрирует молодежи, что медицина - не только ответственное занятие, но и очень увлекательное».

Программа «Экология и здоровье» разрабатывалась с участием Всероссийского общественного движения «Волонтеры-медики», которое было создано при поддержке Минздрава и сейчас стремительно растет. Сегодня, по данным Совета студентов медицинских и фармацевтических вузов при Минздраве России, в медицинских вузах страны активно действуют более 12,5 тысячи волонтеров, которые помогают не менее чем 1,2 млн пациентов. Только за последний год количество студентов, принимающих участие в волонтерских проектах, выросло на треть. В 2016 году было проведено 185 волонтерских мероприятий в детских домах, 550 - в школах, 175 - в образовательных организациях высшего и среднего образования, 555 - в домах престарелых, реабилитационных центрах и больницах, более 100 - в торговых центрах и на городских площадках. Волонтеры выполняют не только чисто медицинскую функцию, - но еще и социальную, культурную, спортивную, педагогическую, санитарно-просветительскую, даже экологическую. Например, волонтеры - очень активные доноры. В этом году около 7 тысяч студентов участвовали в сотне акций, посвященных Дню донора, и сдали в общей сложности 800 литров крови. Кроме того, волонтеры активно помогают врачам больниц и работникам «скорой», дежурят на массовых мероприятиях, чтобы в случае чего оказать зрителям первую помощь, информируют население о болезнях и факторах риска, привлекают внимание к социально значимым проблемам здравоохранения. Еще волонтеры из различных вузов встречаются и общаются как между собой, так и с представителями НКО, госучреждений, бизнес-структур. Ежегодно проходит Всероссийский съезд движения «Волонтеры-медики». Лучшие 250 волонтеров-медиков со всей страны прошли сертифицированный курс обучения в Государственном научно-исследовательском центре профилактической медицины Минздрава России. В этом году на базе РНИМУ им. Н.И. Пирогова был создан Федеральный центр поддержки добровольчества в сфере охраны здоровья. Его основная цель - помощь волонтерским движениям и методическая поддержка, продвижение добровольческих инициатив, а также объединение их ресурсов для крупных проектов в сфере охраны здоровья.

Стремительно модернизируемое и настраиваемое на использование самых передовых технологий медицинское образование, заинтересованное отношение молодых людей к освоению своей профессии, их активное участие в волонтерских проектах и медицинских форумах, возросший интерес к профессии врача в обществе - все это вселяет обоснованную надежду не только на будущее медицины в нашей стране, но и на укрепление здоровья всего общества. И не только в сугубо медицинском смысле.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии