Крапива очищение. Очищение крови и лимфы крапивой. Подписка на новости блога

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Если посмотреть на растения и деревья вокруг нас, то видно, сколь много листьев на каждом из них. Издалека кажется, что ветки и листья на растениях расположены случайным образом, в произвольном порядке. Однако во всех растениях чудесным образом, математически точно спланировано какая веточка откуда будет произрастать, как ветки и листья будут располагаться около стебля или ствола. С первого дня появления растение в точности следует в своём развитии этим законам, то есть ни один лист, ни один цветок не появляется случайно. Ещё до появления растение уже точно запрограммировано. Сколько будет веток на будущем дереве, где вырастут ветки, сколько будет листьев на каждой ветке, и как, в каком порядке будут располагаться листья. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), в числе оборотов на стебле, в числе листьев в цикле проявляет себя ряд Фибоначчи, а стало быть, проявляет себя и закон золотого сечения.

Если вы зададитесь целью отыскать числовые закономерности в живой природе, то заметите, что эти числа часто встречаются в различных спиральных формах, которыми так богат мир растений. Например, черенки листьев примыкают к стеблю по спирали, которая проходит между двумя соседними листьями: полного оборота - у орешника, - у дуба, - у тополя и груши, - у ивы.

Семена подсолнечника, эхинацеи пурпурной и многих других растений, расположены спиралями, причем количества спиралей каждого направления - числа Фибоначчи.

Подсолнечник, 21 и 34 спирали. Эхинацея, 34 и 55 спиралей.

Чёткая, симметричная форма цветов также подчинена строгому закону.

У многих цветов количество лепесточков – именно числа из ряда Фибоначчи. Например:

ирис, 3леп. лютик, 5 леп. златоцвет, 8 леп. дельфиниум,


цикорий,21леп. астра, 34 леп. маргаритки,55леп.

Ряд Фибоначчи характеризует структурную организацию многих живых систем.

Мы уже говорили, что отношений соседних чисел в ряду Фибоначчи есть число φ = 1,618. Оказывается, что и сам человек – просто кладезь числа фи.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы.

M/m=1,618

Первый пример золотого сечения в строении тела человека:



Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.
Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения.

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.


Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.
Есть и другое, более прозаическое применение пропорций тела человека. Например, используя эти соотношения, криминальные аналитики и археологи по фрагментам частей человеческого тела восстанавливают облик целого.

по материалам книги Б. Биггса «вышел хеджер из тумана»

О числах Фибоначчи и трейдинге

В качестве вступления к теме ненадолго обратимся к техническому анализу. Если говорить кратко, то технический анализ ставит задачей предсказать будущее движение цены актива, основываясь на прошлых исторических данных. Наиболее известная формулировка его сторонников — цена уже включает в себя всю необходимую информацию. Реализация технического анализа началась с развитием биржевых спекуляций и наверное полностью не закончена до сих пор, поскольку потенциально сулит неограниченные заработки. Наиболее известными методиками (терминами) в технализе являются уровни поддержки и сопротивления, японские свечи, фигуры, предвещающие разворот цены и др.

Парадоксальность ситуации на мой взгляд заключается в следующем — большинство описанных методов получили столь большое распространение, что, несмотря на отсутствие доказательной базы по их эффективности, действительно получили возможность влиять на поведение рынка. Поэтому даже скептикам, которые пользуются фундаментальными данными, стоит учитывать эти понятия просто потому, что их учитывает очень большое число других игроков («технарей»). Технический анализ может хорошо работать на истории, но стабильно зарабатывать с его помощью на практике не удается практически никому — гораздо проще разбогатеть, издав большим тиражом книгу «как стать миллионером, используя технический анализ»…

В этом смысле особняком стоит теория Фибоначчи, также применяемая для предсказания цены на разные сроки. Ее последователей обычно называют «волновиками». Особняком она стоит потому, что появилась не одновременно с рынком, а гораздо раньше — аж на целых 800 лет. Другая ее особенность в том, что теория нашла свое отражение чуть ли не как мировая концепция для описания всего и вся, и рынок является лишь частным случаем для ее приложения. Эффектность теории и срок ее существования обеспечивают ей как новых сторонников, так и новые попытки составить наименее спорное и общепризнанное описание поведения рынков на ее основе. Но увы — дальше отдельных удачных рыночных предсказаний, которые можно приравнять к везению, теория все-таки не продвинулась.

Суть теории Фибоначчи

Фибоначчи прожил долгую, особенно для своего времени, жизнь, которую посвятил решению ряда математических задач, сформулировав их в своем объемном труде «Книга о счетах» (начало 13 века). Его всегда интересовала мистика чисел — вероятно, он был не менее гениален, чем Архимед или Евклид. Задачи, связанные с квадратными уравнениями, ставились и частично решались и до Фибоначчи, например известным Омаром Хайямом — ученым и поэтом; однако Фибоначчи сформулировал задачу о размножении кроликов, выводы из которой и принесли ему то, что позволило его имени не затеряться в веках.

Вкратце задача заключается в следующем. В место, огороженное со всех сторон стеной, поместили пару кроликов, причем любая пара кроликов производит на свет другую пару каждый месяц, начиная со второго месяца своего существования. Размножение кроликов во времени при этом будет описываться последовательностью: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 и т.д. С математической точки зрения последовательность оказалась просто уникальной, поскольку обладала целым рядом выдающихся свойств:

  • сумма двух любых последовательных чисел есть следующее число последовательности;

  • отношение каждого числа последовательности, начиная с пятого, к предыдущему, равно 1.618;

  • разница между квадратом любого числа и квадратом числа на две позиции левее, будет числом Фибоначчи;

  • сумма квадратов стоящих рядом чисел будет числом Фибоначчи, которое стоит через две позиции после большего из возведенных в квадрат чисел

Из этих выводов наиболее интересен второй, поскольку в нем используется число 1.618, известное как «золотое сечение». Это число было известно еще древним грекам, которые использовали его при постройке Парфенона (кстати, по некоторым данным служившим грекам Центробанком). Не менее интересно и то, что число 1.618 можно обнаружить в природе как в микро-, так и макромасштабе — от витков спирали на панцире улитки до больших спиралей космических галактик. Пирамиды в Гизе, созданные древними египтянами, при конструировании также содержали сразу несколько параметров ряда Фибоначчи. Прямоугольник, одна сторона которого больше другой в 1.618 раза, выглядит наиболее приятно для глаза — это соотношение использовал Леонардо да Винчи для своих картин, а в более житейском плане им иногда пользовались при создании окон или дверных проемов. Даже волну, как на рисунке в начале статьи, можно представить в виде спирали Фибоначчи.


В живой природе последовательность Фибоначчи проявляется не менее часто — ее можно найти в когтях, зубах, подсолнухе, паутине и даже размножении бактерий. При желании последовательность обнаруживается практически во всем, включая человеческое лицо и тело. И тем не менее существует мнение, что многие утверждения, находящие числа Фибоначчи в природных и исторических явлениях, неверны - это распространенный миф, который часто оказывается неточной подгонкой под желаемый результат.

Числа Фибоначчи на финансовых рынках

Одним из первых, кто наиболее плотно занимался приложением чисел Фибоначчи к финансовому рынку, был Р. Эллиот. Его труды не пропали даром в том смысле, что рыночные описания с применением теории Фибоначчи часто называются «волнами Эллиота». В основу развития рынков здесь была положена модель развития человечества из суперциклов с тремя шагами вперед и двумя назад. То, что человечество развивается нелинейно, очевидно почти каждому — знания Древнего Египта и атомистическое учение Демокрита было полностью утрачено в Средневековье, т.е. спустя примерно 2000 лет; 20 век породил такой ужас и ничтожность человеческой жизни, которые сложно было представить даже в эпоху Пунических войн греков. Однако даже если принять теорию шагов и их количество за истину, остается неясной размер каждого шага, что делает волны Эллиота сравнимыми с предсказательной силой орла и решки. Отправная точка и правильный расчет числа волн были и видимо будут главной слабостью теории.

Тем не менее локальные успехи у теории были. Боб Претчер, которого можно считать учеником Эллиота, правильно предсказал бычий рынок начала 80-х, а 1987 год — как поворотный. Это действительно случилось, после чего Боб очевидно чувствовал себя гением — по крайней мере, в глазах других он точно стал инвестиционным гуру. Подписка на Elliott Wave Theorist Пречтера в тот год выросла до 20 000, однако уменьшилась в начале 1990-х годов, поскольку предсказываемые далее «гибель и мрак» американского рынка решили немного повременить. Однако для японского рынка это сработало, и ряд сторонников теории, «опоздавших» там на одну волну, потеряли либо свои капиталы, либо капиталы клиентов своих компаний. Равным образом и с теми же успехами теорию нередко пытаются применить к торговле на валютном рынке.


Теория охватывает самые разные периоды торговли — от недельной, что роднит ее со стандартными стратегиями теханализа, до расчета на десятилетия, т.е. влезает на территорию фундаментальных предсказаний. Это возможно благодаря варьированию числа волн. Слабости теории, о которых говорилось выше, позволяют ее адептам говорить не о несостоятельности волн, а о собственных просчетах в их числе и неверном определении исходного положения. Это похоже на лабиринт — даже если у вас есть верная карта, то выйти по ней можно лишь при условии, что понимаешь, где именно находишься. Иначе пользы от карты нет. В случае же с волнами Эллиота есть все признаки сомневаться не только в правильности своего месторасположения, но и в верности карты как таковой.

Выводы

Волновое развитие человечества имеет под собой реальную основу — в средние века волны инфляции и дефляции чередовались между собой, когда войны сменяли относительно спокойную мирную жизнь. Наблюдение последовательности Фибоначчи в природе по крайней мере в отдельных случаях сомнения тоже не вызывает. Поэтому каждый на вопрос, кто есть Бог: математик или генератор случайных чисел — вправе давать собственный ответ. Лично мое мнение такого, что хотя всю человеческую историю и рынки можно представить в волновой концепции, высоту и продолжительность каждой волны не дано предугадать никому.

При этом 200 лет наблюдений за американским рынком и более 100 лет за остальными позволяют четко сказать, что фондовый рынок растет, проходя через различные периоды роста и стагнации. Этого факта вполне достаточно для долгосрочного заработка на фондовом рынке, не прибегая к спорным теориям и доверяя им больше капитала, чем следует в рамках разумных рисков.

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«КРИВЛЯНСКАЯ СРЕДНЯЯ ШКОЛА»

ЖАБИНКОВСКОГО РАЙОНА

ЧИСЛА ФИБОНАЧЧИ И ЗОЛОТОЕ СЕЧЕНИЕ

Исследовательская работа

Работу выполнила:

учащаяся 10 класса

Садовничик Валерия Алексеевна

Руководитель:

Лавренюк Лариса Николаевна,

учитель информатики и

математики 1 квалификационной

Числа Фибоначчи и природа

Характерной чертой строения растений и их развития является спиральность. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов.

На первый взгляд может показаться, что число листьев, цветков может изменяться в очень широких пределах и принимать любые значения. Но такой вывод оказывается несостоятельным. Исследования показали, что число одноименных органов в растениях не является произвольным, существуют значения, часто встречающиеся и значения, которые встречаются очень редко.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы.

Фот.13 . Лютик

В ромашке число лепестков 55 или 89.

Фот.14 . Ромашка

Пиретрум имеет 34 лепестка.

Фот. 15. Пиретрум

Посмотрим на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.

Фот.16 . Шишка

В корзинках подсолнечника семена также расположены по двум спиралям, их число составляет обычно 34/55, 55/89.

Фот.17 . Подсолнух

Присмотримся к ракушкам. Если пересчитать число «ребер жесткости» у первой, взятой наугад ракушки - получилось 21. Возьмем вторую, третью, пятую, десятую ракушку - у всех будет 21 ребро на поверхности. Видно, моллюски были не только хорошими инженерами, они «знали» числа Фибоначчи.

Фот.18 . Ракушка

Здесь вновь мы видим закономерное сочетание чисел Фибоначчи, расположенных рядом: 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89. Их отношение в пределе стремится к золотой пропорции, выраженной числом 0,61803…

Числа Фибоначчи и животные

Число лучей у морских звезд отвечает ряду чисел Фибоначчи или очень близко к ним и равно 5,8, 13,21,34,55.

Фот.19 . Морская звезда

Современные членистоногие очень разнообразны. У лангуста также пять пар ног, на хвосте пять перьев, брюшко делится на пять сегментов, а каждая нога состоит из пяти частей.

Фот. 20. Лангуст

У некоторых насекомых брюшко состоит из восьми сегментов, имеется три пары конечностей, состоящих из восьми частей, а из ротового отверстия выходят восемь различных усикоподобных органов. У нашего хорошо знакомого комара - три пары ног, брюшко делится на восемь сегментов, на голове пять усиков - антенн. Личинка комара членится на 12 сегментов.

Фот. 21. Комар

У мухи капустной брюшко членится на пять частей, имеется три пары ног, а личинка разделена на восемь сегментов. Каждое из двух крыльев разделено тонкими прожилками на восемь частей.

Гусеницы многих насекомых членятся на 13 сегментов, например, у шкуроеда, мукоеда, козявки мавританской. У большинства жуков-вредителей гусеница членится на 13 сегментов. Очень характерно строение ног у жуков. Каждая нога состоит из трех частей, как и у высших животных, - из плечевой, предплечья и лапы. Тонкие, ажурные лапы жуков членятся на пять частей.

Ажурные, прозрачные, невесомые крылья стрекозы - это шедевр «инженерного» мастерства природы. Какие же пропорции положены в основу конструкции этого крохотного летательного мускулолета? Отношение размаха крыльев к длине тела у многих стрекоз равно 4/3. Тело стрекозы делится на две основные части: массивный корпус и длинный тонкий хвост. В корпусе выделяется три части: голова, грудь, брюшко. Брюшко разбито на пять сегментов, а хвост состоит из восьми частей. Сюда еще необходимо добавить три пары ног с их членением на три части.

Фот. 22. Стрекоза

Нетрудно увидеть в этой последовательности членения целого на части развертывание ряда чисел Фибоначчи. Длина хвоста, корпуса и общая длина стрекозы связаны между собой золотой пропорцией: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Неудивительно, что стрекоза выглядит столь совершенной, ведь она создана по законам золотой пропорции.

Вид черепахи на фоне покрытого трещинами такыра - явление удивительное. В центре панциря большое овальное поле с крупными сросшимися роговыми пластинами, а по краям - кайма из более мелких пластинок.

Фот. 23. Черепаха

Возьмите любую черепаху - от близкой нам болотной до гигантской морской, суповой черепахи - и вы убедитесь, что рисунок на панцире у них аналогичный: на овальном поле расположено 13 сросшихся роговых пластин - 5 пластин в центре и 8 - по краям, а на периферийной кайме около 21 пластинки (у чилийской черепахи по периферии панциря точно 21 пластина). На лапах у черепах по 5 пальцев, а позвоночный столб состоит из 34 позвонков. Нетрудно заметить, что все указанные величины отвечают числам Фибоначчи. Следовательно, развитие черепахи, формирование ее тела, членение целого на части осуществлялось по закону ряда чисел Фибоначчи.

Высшим типом животных на планете являются млекопитающие. Число ребер у многих видов животных равно или близко к тринадцати. У совершенно разных млекопитающих - кита, верблюда, оленя, тура - число ребер составляет 13 ± 1. Число позвонков меняется очень сильно, особенно за счет хвостов, которые могут быть различной длины даже у одного и того же вида животного. Но у многих из них число позвонков равно или близко к 34 и 55. Так, 34 позвонка у гигантского оленя, 55 - у кита.

Скелет конечностей домашних животных состоит из трех тождественных костных звеньев: плечевой (тазовой) кости, кости предплечья (голени) и кости лапы (стопы). Стопа, в свою очередь, состоит из трех костных звеньев.

Число зубов у многих домашних животных тяготеет к числам Фибоначчи: у кролика 14 пар, у собаки, свиньи, лошади - 21 ± 1 пара зубов. У диких животных число зубов изменяется более широко: у одного сумчатого хищника оно равно 54, у гиены - 34, у одного из видов дельфинов достигает 233. Общее число костей в скелете домашних животных (с учетом зубов) у одной группы близко к 230, а у другой - к 300. Следует учесть, что в число костей скелета не включены маленькие слуховые косточки и непостоянные косточки. С их учетом общее число костей скелета у многих животных станет близким к 233, а у других - превысит 300. Как видим, членение тела, сопровождавшееся развитием скелета, характеризуется дискретным изменением числа костей в различных органах животных, и эти числа отвечают числам Фибоначчи или очень близки к ним, образуя ряд 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Отношение размеров у большинства куриных яиц равно 4:3 (у некоторых 3/2), семечек тыквы - 3:2, арбузных семечек - 3/2. Отношение длины сосновых шишек к их диаметру оказалось равным 2:1. Размеры березовых листьев в среднем очень близки к, а желудей - 5:2.

Считается, что если необходимо разбить на две части цветочный газон (трава и цветы), то не следует делать эти полосы равными по ширине, красивее будет, если взять их в отношении 5: 8 или 8: 13, т.е. воспользоваться такой пропорцией, которые называется «золотым сечением».

Числа Фибоначчи и фотография

Применительно к фотографическому искусству правило золотого сечения делит кадр двумя горизонтальными и двумя вертикальными линиями на 9 неравных прямоугольников. Чтобы облегчить себе задачу съемки сбалансированных изображений, фотографы немного упростили задачу и стали делить кадр на 9 равных прямоугольников в соответствии с числами Фибоначчи. Так правило золотого сечения трансформировалось в правило третей, которое относится к одному из принципов построения композиции.

Фот. 24. Кадр и золотое сечение

В видоискателях современных цифровых камер точки фокусировки расположены на позициях 2/8 или на воображаемых линиях, делящих кадр по правилу золотого сечения.

Фот.25. Цифровая фотокамера и точки фокусировки

Фот.26.

Фот.27. Фотография и точки фокусировки

Правило третей применимо ко всем сюжетным композициям: снимаете вы пейзаж или портрет, натюрморт или репортаж. Пока ваше чувство гармонии не стало приобретенным и бессознательным, соблюдение нехитрого правила третей позволит вам делать снимки выразительные, гармоничные, сбалансированные.

Фот.28. Фотография и отношение неба и земли 1 к 2.

Наиболее удачным примером для демонстрации является пейзаж. Принцип композиции заключается в том, что небо и суша (либо водная гладь) должны иметь соотношение 1:2. Одну треть кадра следует отвести под небо, а две трети под сушу или наоборот.

Фот.29. Фотография цветка закручивается по спирали

Фибоначчи и космос

Соотношение воды и суши на планете Земля составляет 62% и 38%.

Размеры Земли и Луны находятся в золотой пропорции.

Фот.30. Размеры Земли и Луны

На рисунке показаны относительные размеры Земли и Луны в масштабе.

Нарисуем радиус Земли. Проведем отрезок от центральной точки Земли до центральной точки Луны, длина которого будет равна). Нарисуем отрезок для соединения двух данных отрезков, чтобы сформировать треугольник. Получаем золотой треугольник.

Сатурн показывает золотую пропорцию в нескольких ее измерениях

Фот.31. Сатурн и его кольца

Диаметр Сатурна очень близко находится в отношении золотой пропорции с диаметром колец, как показано зелеными линиями. Радиус в нутренней части колец находится в отношении, очень близком к с внешним диаметром колец, как показано синей линией.

Расстояние планет от Солнца также подчиняется золотой пропорции.

Фот.32. Расстояние планет от Солнца

Золотое сечение в быту

Золотое сечение также используется, чтобы придать стиль и привлекательность в области маркетинга и дизайна повседневных потребительских товаров. Примеров множество, но проиллюстрируем лишь некоторые.

Фот.33. Эмблема Toyota

Фот.34. Золотое сечение и одежда

Фот.34. Золотое сечение и автомобильный дизайн

Фот.35. Эмблема Apple

Фот.36. Эмблема Google

Практические исследования

Теперь применим полученные знания на практике. Проведем сначала измерения среди учащихся 8 класса.

В эксперименте приняли участие 7 учащихся 8 класса, 5 девочек и 2 мальчика. Измерялся рост и расстояние от пупка до пола. Результаты отражены в таблицы. Одна учащаяся идеального телосложения, для неё отношение роста к расстоянию от пупка до пола равно 1,6185. Ещё одна учащаяся очень близка к золотому сечению, . В результате проведенных измерений 29% участников имеют идеальные параметры. Эти результаты в процентах тоже близки к золотому сечению 68% и 32%. Для первой испытуемой мы видим, что 3 отношения из 5 близки к золотому сечению, в процентном соотношении это 60% к 40%. А для второй – 4 из 5, то есть 80% к 20%.

Если внимательно посмотреть на телевизионную картинку, то ее размеры будут 16 к 9 или 16 к 10, что тоже близко к золотому сечению.

Проводя измерения и построения в CorelDRAW X4 и используя кадр новостного канала Россия 24, можно обнаружить следующее:

а) отношение длины к ширине кадра равно 1,7.

б) человек в кадре расположен ровно в точках фокусировки, расположенных на расстоянии 3/8.

Далее обратимся к официальному микроблогу газеты «Известия», другими словами, к твиттер-страничке. Для экрана монитора со сторонами 4:3видим, что «шапка» странички составляет 3/8 от всей высоты странички.

Внимательно посмотрев на фуражки военных, можно обнаружить следующее:

а) фуражка министра обороны РФ имеет отношение указанных частей 21,73 к 15,52, равное 1,4.

б) фуражка пограничника РБ имеет размеры указанных частей 44,42 к 21,33 , что равно 2,1.

в) фуражка времен СССР имеет размеры указанных частей 49,67 к 31,04, что равно 1,6.

Для данной модели подойдет длина платья 113,13 мм.

Если «дорисовать» платье до «идеальной» длины, то получим вот такую картинку.

Все измерения имеют некоторую погрешность, так как проводились по фотографии, что не мешает увидеть тенденцию – всё, что идеально, содержит золотое сечение в той или иной степени.

Заключение

Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций! Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир природы - это прежде всего мир гармонии, в которой действует "закон золотого сечения".

Золотое сечение” представляется тем моментом истины, без выполнения которого не возможно, вообще, что-либо сущее. Что бы мы ни взяли элементом исследования, “золотое сечение” будет везде; если даже нет видимого его соблюдения, то оно обязательно имеет место на энергетическом, молекулярном или клеточном уровнях.

Воистину природа оказывается однообразной (и потому единой!) в проявлении своих фундаментальных закономерностей. Найденные ею «наиболее удачные» решения распространяются на самые различные объекты, на самые разнообразные формы организации. Непрерывность и дискретность организации исходит из двуединства материи - ее корпускулярной и волновой природы, проникает в химию, где дает законы целочисленной стехиометрии, химические соединения постоянного и переменного состава. В ботанике непрерывность и дискретность находят свое специфическое выражение в филлотаксисе, квантах дискретности, квантах роста, единстве дискретности и непрерывности пространственно-временной организации. И вот уже в числовых соотношениях органов растений появляется «принцип кратных отношений», введенный А. Гурским, - полное повторение основного закона химии.

Конечно, заявление, что все эти явления построены на последовательности Фибоначчи, звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (). Часть ряда выглядит примерно так: ... ; ; ; ; ; ; ; ; ; ; ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим =1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Список используемых источников

    Васютинский, Н. Золотая пропорция/ Васютинский Н, Москва, Молодая гвардия, 1990, - 238 с. - (Эврика).

    Воробьев, Н.Н. Числа Фибоначчи,

    Режим доступа: . Дата доступа: 17. 11. 2015.

    Режим доступа: . Дата доступа: 16. 11. 2015.

    Режим доступа: . Дата доступа: 13. 11. 2015.

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.


Вам, конечно же, знакома идея о том, что математика является самой главной из всех наук. Но многие могут с этим не согласиться, т.к. порой кажется, что математика – это лишь задачи, примеры и тому подобная скукотища. Однако математика может запросто показать нам знакомые вещи с совершенно незнакомой стороны. Мало того – она даже может раскрыть тайны мироздания. Как? Давайте обратимся к числам Фибоначчи.

Что такое числа Фибоначчи?

Числа Фибоначчи являются элементами числовой последовательности, где каждое последующее посредством суммирования двух предыдущих, например: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Как правило, записывается такая последовательность формулой: F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2.

Числа Фибоначчи могут начинаться и с отрицательных значений «n», но в таком случае последовательность будет двусторонней – она будет охватывать и положительные и отрицательные числа, стремясь к бесконечности в двух направлениях. Примером такой последовательности может послужить: -34, -21, -13, -8, -5, -3, -2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, а формула будет: F n = F n+1 — F n+2 или же F -n = (-1) n+1 Fn.

Создателем чисел Фибоначчи является один из первых математиков Европы средних веков по имени Леонардо Пизанский, которого, собственно и знают, как Фибоначчи – это прозвище он получил спустя много лет после своей смерти.

При жизни Леонардо Пизанский очень любил математические турниры, по причине чего в своих работах («Liber abaci» /«Книга абака», 1202; «Practica geometriae»/«Практика геометрии», 1220, «Flos»/«Цветок», 1225 год – исследование на тему кубических уравнений и «Liber quadratorum»/«Книга квадратов», 1225 – задачи о неопределенных квадратных уравнениях) очень часто разбирал всевозможные математические задачи.

О жизненном пути самого Фибоначчи известно крайне мало. Но достоверно известно то, что его задачи пользовались огромнейшей популярностью в математических кругах в последующие века. Одну из таких мы и рассмотрим далее.

Задача Фибоначчи с кроликами

Для выполнения задачи автором были поставлены следующие условия: есть пара новорождённых крольчат (самка и самец), отличающихся интересной особенностью – со второго месяца жизни они производят новую пару кроликов – тоже самку и самца. Кролики находятся в замкнутом пространстве и постоянно размножаются. И ни один кролик не умирает.

Задача : определить количество кроликов через год.

Решение :

У нас есть:

  • Одна пара кроликов в начале первого месяца, которая спаривается в конце месяца
  • Две пары кроликов во втором месяце (первая пара и потомство)
  • Три пары кроликов в третьем месяце (первая пара, потомство первой пары с прошлого месяца и новое потомство)
  • Пять пар кроликов в четвёртом месяце (первая пара, первое и второе потомство первой пары, третье потомство первой пары и первое потомство второй пары)

Количество кроликов в месяц «n» = количеству кроликов прошлого месяца + количество новых пар кроликов, другими словами, вышеназванная формула: F n = F n-1 + F n-2 . Отсюда получается рекуррентная числовая последовательность (о рекурсии мы скажем далее), где каждое новое число соответствует сумме двух предыдущих чисел:

1 месяц: 1 + 1 = 2

2 месяц: 2 + 1 = 3

3 месяц: 3 + 2 = 5

4 месяц: 5 + 3 = 8

5 месяц: 8 + 5 = 13

6 месяц: 13 + 8 = 21

7 месяц: 21 + 13 = 34

8 месяц: 34 + 21 = 55

9 месяц: 55 + 34 = 89

10 месяц: 89 + 55 = 144

11 месяц: 144 + 89 = 233

12 месяц: 233+ 144 = 377

И эта последовательность может продолжаться бесконечно долго, но учитывая, что задачей является узнать количество кроликов по истечении года, получается 377 пар.

Здесь важно также заметить, что одним из свойств чисел Фибоначчи является то, что если сопоставить две последовательные пары, а затем разделить большую на меньшую, то результат будет двигаться по направлению к золотому сечению, о котором мы также скажем ниже.

Пока же предлагаем вам ещё две задачи по числам Фибоначчи:

  • Определить квадратное число, о котором известно только, что если отнять от него 5 или прибавить к нему 5, то снова выйдет квадратное число.
  • Определить число, делящееся на 7, но при условии, что поделив его на 2, 3, 4, 5 или 6 в остатке будет 1.

Такие задачи не только станут отличным способом развития ума, но и занимательным времяпрепровождением. О том, как решаются эти задачи, вы также можете узнать, поискав информацию в Интернете. Мы же не будем заострять на них внимание, а продолжим наш рассказ.

Что же такое рекурсия и золотое сечение?

Рекурсия

Рекурсия является описанием, определением или изображением какого-либо объекта или процесса, в котором есть сам данный объект или процесс. Иначе говоря, объект или процесс можно назвать частью самого себя.

Рекурсия широко используется не только в математической науке, но также и в информатике, массовой культуре и искусстве. Применимо к числам Фибоначчи, можно сказать, что если число равно «n>2», то «n» = (n-1)+(n-2).

Золотое сечение

Золотое сечение является делением целого на части, соотносящиеся по принципу: большее относится к меньшему аналогично тому, как общая величина относится к большей части.

Впервые о золотом сечении упоминает Евклид (трактат «Начала» прим. 300 лет до н.э.), говоря и построении правильного прямоугольника. Однако более привычное понятие было введено немецким математиком Мартином Омом.

Приблизительно золотое сечение можно представить в качестве пропорционального деления на две разные части, к примеру, на 38% и 68%. Численное же выражение золотого сечения равно примерно 1,6180339887.

На практике золотое сечение используется в архитектуре, изобразительном искусстве (посмотрите работы ), кино и других направлениях. На протяжении долгого времени, впрочем, как и сейчас, золотое сечение считалось эстетической пропорцией, хотя большинством людей оно воспринимается непропорциональным – вытянутым.

Вы можете попробовать оценить золотое сечение сами, руководствуясь следующими пропорциями:

  • Длина отрезка a = 0,618
  • Длина отрезка b= 0,382
  • Длина отрезка c = 1
  • Соотношение c и a = 1,618
  • Соотношение c и b = 2,618

Теперь же применим золотое сечение к числам Фибоначчи: берём два соседних члена его последовательности и делим большее на меньшее. Получаем примерно 1,618. Если же возьмём то же самое большее число и поделим его на следующее большее за ним, то получим примерно 0,618. Попробуйте сами: «поиграйте» с числами 21 и 34 или какими-то другими. Если же провести этот опыт с первыми числами последовательности Фибоначчи, то такого результата уже не будет, т.к. золотое сечение «не работает» в начале последовательности. Кстати, чтобы определить все числа Фибоначчи, нужно знать всего лишь три первых последовательных числа.

И в заключение ещё немного пищи для ума.

Золотой прямоугольник и спираль Фибоначчи

«Золотой прямоугольник» — это ещё одна взаимосвязь между золотым сечением и числами Фибоначчи, т.к. соотношение его сторон равно 1,618 к 1 (вспоминайте число 1,618!).

Вот пример: берём два числа из последовательности Фибоначчи, например 8 и 13, и чертим прямоугольник с шириной 8 см и длинной 13 см. Далее разбиваем основной прямоугольник на мелкие, но их длина и ширина должна соответствовать числам Фибоначчи – длина одной грани большого прямоугольника должна равняться двум длинам грани меньшего.

После этого соединяем плавной линией углы всех имеющихся у нас прямоугольников и получаем частный случай логарифмической спирали – спираль Фибоначчи. Её основными свойствами являются отсутствие границ и изменение форм. Такую спираль можно часто встретить в природе: самыми яркими примерами являются раковины моллюсков, циклоны на изображениях со спутника и даже ряд галактик. Но более интересно то, что этому же правилу подчиняется и ДНК живых организмов, ведь вы помните, что оно имеет спиралевидную форму?

Эти и многие другие «случайные» совпадения даже сегодня будоражат сознание учёных и наводят на мысль о том, что всё во Вселенной подчинено единому алгоритму, причём, именно математическому. И эта наука кроет в себе огромное количество совсем нескучных тайн и загадок.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии