Как регулируется работа сердца кратко. Нарушения деятельности сердца. Роль различных отделов ЦНС

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Ритмические сокращения сердца обусловлены электрически­ми потенциалами, возникающими в пейсмекерах первого по­рядка, т. е. в синусном узле. Такая частота работы сердца назы­вается синусной и наблюдается у животных в состоянии физио­логического покоя. Сила сокращения сердца в определенном диапазоне, главным образом в состоянии покоя, также регу­лируется внутрисердечными механизмами (законы Боудича и Франка - Старлинга).

Однако при различных внешних воздействиях или при измене­ниях деятельности отдельных органов и систем организма работа сердца изменяется. В результате изменения, или регуляции, сер­дечной деятельности обеспечивается соответствие между уровнем обменных процессов в органах и количеством крови, нагнетаемой сердцем в сосудистую систему. Такое динамическое равновесие между потребностью организма и его реализацией достигается за счет изменения частоты и силы сокращений сердца, что связано уже не только с внутрисердечными механизмами, но и с внесер-дечными, или экстракардиальными.

Внутрисердечные механизмы включают в себя внутриклеточ­ные механизмы, межклеточное взаимодействие и внутрисердеч­ные периферические рефлексы.

Внутриклеточные механизмы направлены на усиление или ослабление синтеза клеточных белков, а также внутриклеточ­ных структур, обеспечивающих биохимические процессы в клет­ках. Стимуляция этих процессов лежит в основе физиологической или рабочей гипертрофии сердечных мышц (например, у спортив­ных лошадей). К внутриклеточным механизмам применим за­кон Франка - Стерлинга (сила сокращения миокарда пропор­циональна исходной длине его мышечных волокон).

Механизмы межклеточного взаимодействия обеспечиваются вставочными дисками, объединяющими клетки миокарда в функ­циональный синцитий. Благодаря вставочным дискам клетки об­мениваются информацией и возбуждение очень быстро, практи­чески одновременно охватывает всю сердечную мышцу.

Внутрисердечные периферические рефлексы - более высокий уровень регуляции. Эти рефлексы замыкаются не в центральной нервной системе, а во внутрисердечных нервных ганглиях, поэто­му они имеют короткую рефлекторную дугу. Афферентные (чув­ствительные) нейроны воспринимают растяжения мышечных во­локон сердца и коронарных сосудов, эфферентные (двигательные) нейроны иннервируют миокард и гладкие мышцы коронарных со­судов. Например, при переполнении кровью и растяжении право­го предсердия, что обычно бывает при венозных застоях в боль­шом круге кровообращения, усиливаются сокращения левого же­лудочка. Значение этого рефлекса в том, чтобы больше крови пе­рекачать из полых вен в артерии. Однако так происходит только при нормальном или пониженном давлении крови в аорте. Если же камеры сердца переполнены кровью, а давление в аорте повы­шено, то растяжение предсердий на этом фоне угнетает сокра­щения миокарда и в аорту выбрасывается меньше крови. При нормальном притоке крови к сердцу, но высоком артериальном давлении сила сокращений миокарда увеличивается, способствуя «проталкиванию» крови в артерии.



Подобные внутрисердечные рефлексы стабилизируют напол­нение кровью артериального русла: уменьшают выброс крови в артерии при переполнении их кровью и увеличивают при недоста­точном возврате крови к сердцу.

Внесердечная, или экстракардиальная, регуляция сердечной дея­тельности-еще более высокий уровень приспособления сердца к потребностям организма. Она осуществляется нейрогуморальными механизмами, т. е. при участии ЦНС и биологически активных веществ, доставляемых к сердцу кровью.

Нервная регуляция. Нервная, или рефлекторная, регуляция осуществляется по принципу рефлексов. Это значит, что изменения работы сердца происходят вследствие действия каких-либо раздражителей по классической рефлекторной дуге: рецепторы - афферентные нервы - нервный центр - эфферент­ные нервы - сердце.


Рассмотрение нервной регуляции работы сердца целесообразно начать с эфферентной части рефлекторной дуги. Эфферентные, или центробежные, нервы сердца относятся к вегетативной нерв­ной системе. Каждое вегетативное нервное волокно образовано двумя нервными клетками. Первый нейрон находится в централь­ной нервной системе и не доходит до эффектора, а его аксон за­канчивается в нервном ганглии и называется преганглионарным. Второй нейрон - постганглионарный, начинается из нервного ганглия, а его аксон доходит до мышечных волокон сердца.

Парасимпатические преганглионарные нервные волокна начи­наются в продолговатом мозге и идут в составе блуждающего нер­ва вагуса, являющегося десятой парой черепно-мозговых нер­вов (рис. 6.7.). Аксоны преганглионарных парасимпатических во­локон заканчиваются в интрамуральных ганглиях сердца, главным образом в правом предсердии. Отсюда короткие аксоны пост-ганглионарных нейронов направляются к синусному и атриовентри-кулярному узлам проводящей системы сердца, и лишь небольшое количество волокон расходится в миокарде предсердий.

Симпатические преганглионарные нейроны находятся в шести первых сегментах грудной части спинного мозга, а их аксоны за­канчиваются в шейных и грудных симпатических узлах. Из шей­ного звездчатого ганглия, имеющего важное значение в их рас­пределении, выходят постганглионарные симпатические волок­на, иннервирующие главным образом мышцы желудочков и в меньшей степени мышцы предсердий.

Вегетативные нервы влияют на все свойства сердечной мышцы. Влияние на частоту сокращений сердца называется хронотроп-ным, на силу сокращений - инотропным, на возбудимость - бат-мотропным, на скорость распространения возбуждения - дромо-тропным. Если работа сердца при воздействии на него урежается или ослабляется, говорят об отрицательном влиянии, а если учащается или усиливается - о положительном.

При раздражении симпатических нервов на­блюдаются положительные хронотропный, ино-гропный, батмотропный и дромотропный эф­фекты. Раздражение парасимпатических нер-нов вызывают отрицательные воздействия, т. е. угнетение работы сердца вплоть до его ос­тановки (рис. 6.8). Открытие тормозного дей­ствия вагуса на сердце лягушки впервые пока-

Рис. 6.7. Схема иннервации сердца:

/ - кора мозга; 2- продолговатый мозг; 3, 4- симпатические во-иокна (пост- и преганглионарные); J-шейные симпатические ушы; 6- волокна блуждающего нерва (пре- и постганглионар­ные); 7- промежуточный мозг

В составе как симпатических, так и парасимпатических нервов обнаружены путем тщательной препаровки и последующей сти­муляции электрическим током отдельные волокна, которые ока­зывают или хронотропные, или инотропные влияния. Влияние нервов на сердце реализуется че­рез нервные медиаторы. В синап-тических окончаниях пре- и пост-ганглионарных волокон парасим­патических нервов выделяется ацетилхолин, такие волокна на­зываются холинергическими. Ацетилхолин выделяется также в окончаниях преганглионарных симпатических волокон - в сим­патических ганглиях. В окончаниях постганглионарных симпати­ческих волокон освобождается норадреналин, это - адренерги-ческие волокна.

Вызываемый при раздражении нервов эффект зависит не толь­ко от медиаторов, их химической структуры, но и от белковых мо­лекул - рецепторов, находящихся на постсинаптических мембра­нах. Именно взаимодействие медиатора с рецептором определяет ответную реакцию тканей на раздражение. Один и тот же медиа­тор может вызывать противоположные реакции в различных тка­нях. Например, в скелетных мышцах ацетилхолин является воз­буждающим медиатором, а в сердце - тормозным.

Механизм тормозного влияния вагуса на сердце связан с тем, что ацетилхолин, освобождающийся из пресинаптической мем­браны, взаимодействуя с холинрецептором, вызывает повышение калиевой проницаемости мембран пейсмекерных клеток и их гиперполяризацию. Вследствие этого новый потенциал действия возникает позднее. Укороченный потенциал действия не спосо­бен возбудить достаточное количество кардиомиоцитов. Помимо этого гиперполяризация мышечных волокон противодействует входу кальция внутрь миофибрилл. Ацетилхолин также угнетает активность АТФ и снижает силу сокращения саркомеров. Таким образом, раздражение вагуса приводит к повышению порога раз­дражимости предсердий, подавлению автоматии и замедлению проводимости атриовентрикулярного узла и уменьшению силы сокращения миокарда (см. рис. 6.8, А).

Если раздражение вагуса продолжать длительное время, то ос­тановившееся вначале сердце начинает вновь сокращаться, при­чем сокращения оказываются более сильными и редкими, чем в


норме. Такое явление называется «ускользанием сердца из-под влияния вагуса», и, возможно, оно является результатом компен­саторного усиления симпатических влияний на сердце. Есть и другая точка зрения: угнетение вагусом автоматии синусного узла способствует проявлению других очагов автоматии, в первую оче­редь атриовентрикулярного узла.

Раздражение симпатических нервов (см. рис. 6.8, Б) вызывает учащение сердечного ритма и увеличение силы сокращений серд­ца. Механизмы влияния симпатических нервов на сердце также объясняются взаимодействием медиатора с рецепторами постси­наптических мембран. Норадреналин, выделяющийся из оконча­ний адренергических симпатических нервов, взаимодействует с бета-рецепторами поверхностной мембраны. В результате увели­чивается проницаемость мембраны для натрия и кальция и умень­шается для калия. Скорость возникновения потенциала действия возрастает, увеличивается возбудимость и проводимость сердеч­ной мышцы. Симпатические нервы улучшают трофику (питание) сердечной мышцы и расширяют коронарные сосуды, улучшая ее кровоснабжение.

Норадреналин разрушается в синапсах значительно медленнее, чем ацетилхолин, поэтому адренергические влияния продолжи­тельнее холинергических и сохраняются некоторое время после прекращения симпатической стимуляции.

Если у животного перерезать парасимпатические нервы, иду­щие к сердцу, или заблокировать передачу возбуждения с пара­симпатических нервов на миокардиоциты (например, введением атропина), то частота сокращений сердца резко возрастает -в полтора-два раза.Если же перерезать симпатические нервы или ввести бета-адреноблокатор, то частота сокращения сердца умень­шится, но лишь на 15...20 %. Эти наблюдения, неоднократно под­твержденные на лабораторных животных и на людях, показали, что в состоянии покоя в большем тонусе находится блуждающий нерв. Он постоянно тормозит работу сердца в большей или в меньшей степени. У новорожденных животных тонус блуждаю­щих нервов отсутствует, поэтому у них частота сокращений сердца намного больше, чем у взрослых.

Тонус блуждающих нервов поддерживается постоянными им­пульсами, поступающими в продолговатый мозг, в ядра вагуса, от различных рецепторов. Особенно важное значение имеют рецепторы дуги аорты и каротидного синуса, которые раздражаются при каж­дом систолическом выбросе крови из левого желудочка в аорту.

При мышечной работе, психоэмоциональных нагрузках увели­чивается тонус симпатической нервной системы, и это вызывает положительные инотропные и хронотропные влияния на сердце, но при этом тонус парасимпатических нервов снижается.

Таким образом, несмотря на противоположное влияние на серд­це, между симпатическими и парасимпатическими центрами сер-

дечной деятельности нет антагонизма. Эти центры находятся меж­ду собой в состоянии реципрокного торможения, когда возбужде­ние одного отдела автоматически ведет к торможению другого. Поэтому в состоянии физиологического покоя преобладает тонус парасимпатических нервов и сердце работает на 1/5... 1/6 ниже своих возможностей. Зато при различных нагрузках повышается тонус симпатического отдела и сердце увеличивает частоту и силу сокращений в несколько раз.

Помимо продолговатого мозга, где расположены центры блуж­дающего нерва, и спинного мозга с центрами симпатических нер­вов в регуляции работы сердца участвуют вышележащие отделы мозга - средний и промежуточный, а также лимбическая система и кора больших полушарий. При раздражении этих отделов воз­никают разнообразные рефлекторные реакции, приспосабливаю­щие работу сердца к потребностям организма. Так, кора больших полушарий участвует в образовании условных рефлексов (напри­мер, предстартовой тахикардии у спортивных лошадей), а также в проявлении различных эмоций.

Большая часть сердечных рефлексов сочетается с сосудисты­ми рефлекторными реакциями и направлена на регуляцию крово­обращения в целом. Рефлекторные изменения работы сердца мо­гут возникнуть при раздражении самых разнообразных экстеро- и интерорецепторов.

Рефлексы, начинающиеся с сосудистых рефлексогенных зон, имеют очень большое значение в регуляции сердечной деятельно­сти, сосудистого тонуса и других функций организма.

Синокаротидная зона, или зона каротидного синуса, - парная, находится в разветвлениях правой и левой сонных артерий на на­ружные и внутренние ветви. Здесь имеется «каротидное тельце», или каротидный синус, представляющий собой скопление боль­шого числа нервных клеток и чувствительных нервных оконча­ний. Каротидный синус имеет собственную оболочку и сеть пита­ющих его кровеносных сосудов.

Рецепторы синокаротидной зоны чувствительны к колебаниям артериального давления, его изменения воспринимаются баро-или прессорецепторами. При повышении артериального давления импульсы от рецепторов по синусному нерву (веточка языкогло-точного нерва) передаются в продолговатый мозг и переключают­ся на ядра блуждающего нерва. По вагусу ответная команда посту­пает к сердцу, вызывая отрицательные инотропные и хронотроп-ные эффекты. В результате артериальное давление снижается. Если же артериальное давление ниже какого-то уровня, свойст­венного данному животному, барорецепторы не получают нужной информации, что ведет к ослаблению влияния блуждающего нер­ва на сердце и усилению симпатической стимуляции. В синокаро­тидной зоне имеются также хеморецепторы, чувствительные к


концентрации кислорода, диоксида углерода, водородных ионов, никотина и других веществ.

Вторая жизненно важная сосудистая рефлексогенная зона нахо­дится в дуге аорты. Здесь также расположено большое скопление баро- и хеморецепторов, раздражение от которых передается по аортальному, или депрессорному, нерву в продолговатый мозг, от­куда по вагусу импульсы идут к сердцу, уменьшая его работу.

Таким образом, обе указанные зоны - аортальная и синока­ротидная - функционируют однонаправленно, как бы дублируя друг друга. Аортальная зона контролирует общее артериальное давление в организме, а синокаротидная зона регулирует крово­снабжение мозга.

Большую роль в регуляции сердечной деятельности играет рефлексогенная зона вблизи устья полых вен, а также в правом предсердии. Рефлекс с барорецепторов этой зоны носит название рефлекса Бейнбриджа. Он заключается в том, что при переполне­нии кровью и растяжении полых вен импульсы от рецепторов этой зоны направляются по сегментарным спинномозговым нер­вам в грудную часть спинного мозга, где находятся центры симпа­тических нервов сердца. Симпатические нервы усиливают работу сердца, и давление крови в полых венах снижается.

Рефлекторные изменения работы сердца возникают и при раз­дражении других рецепторных участков (зон) организма. Рефлекс Гольца проявляется в виде резкого замедления, вплоть до останов­ки сердца, при раздражении механорецепторов брюшной стенки и органов брюшной полости, а также при резком охлаждении кожи живота. Рефлекс Ашнера заключается также в замедлении сокра­щений сердца при несильном (неболевом) надавливании на глаз­ное яблоко. У здоровых людей при этом частота сокращений серд­ца уменьшается примерно на 10 ударов в минуту. Рефлекс Ашнера используют иногда для определения тонуса.вегетативной нервной системы. Рефлекс Парина проявляется следующим образом: при увеличении давления в легочной артерии ритм сокращений серд­ца замедляется.

Замыкание рефлекторных дуг указанных рефлексов происходит на уровне продолговатого мозга, это типичные вагусные рефлексы с отрицательными инотропным и хронотропным эффектами.

Усиление работы сердца происходит при болевых раздражени­ях, сокращении скелетных мышц во время физической нагрузки. В этих случаях рефлекторные реакции осуществляются через сим­патическую нервную систему.

Очень чутко реагирует сердце на изменение температуры кро­ви. При повышении температуры частота сокращений сердца воз­растает, при снижении - уменьшается. Влияние тепла и холода сказывается прежде всего на возбудимости и проводимости серд­ца, особенно клеток синусного узла. Изменения частоты и силы

сокращений сердца наблюдаются даже при локальном охлаждении или согревании синусного узла. Кроме того, от температуры прите­кающей крови зависит скорость биохимических реакций.

Не всегда отмечаются однонаправленные изменения силы и частоты сокращений сердца. При учащении сердечного ритма укорачивается диастолическая пауза и сила сокращения может уменьшиться. Напротив, урежение сердечного ритма может при­вести к более мощным сокращениям, так как в этом случае увели­чивается диастолическое наполнение сердца кровью.

Гуморальная регуляция сердца. Биологически активные вещества влияют либо непосредственно на сердечные волокна, либо на эфферентные нервные окончания синапсов, либо рефлекторно - через центральную нервную систему.

Катехоламины (адреналин, норадреналин) - гормоны, выделя­ющиеся мозговым веществом надпочечников и островками хром-аффиновой ткани, разбросанными по всему организму. Катехол­амины являются также медиаторами адренергических нервов. Они действуют на сердце аналогично симпатической нервной системе, реагируют с бета-рецепторами, вызывая положительные инотроп-ные и хронотропные воздействия.

Ацетилхолин образуется в холинергических нервных оконча­ниях. К сердцу он поступает не только через синапсы парасимпа­тических сердечных нервов, но через кровь и интерстициальную жидкость, действуя так же, как и парасимпатические нервы (отри­цательные эффекты).

Положительное инотропное действие на сердце оказывают глюкагон - гормон поджелудочной железы, тироксин - гормон щитовидной железы и кортикостероиды - гормоны коры надпо­чечников. Действие указанных гормонов на сердце реализуется либо через циклический аденозинмонофосфат (цАМФ), находя­щийся в мембране клеток, либо через усиление тонуса симпати­ческой нервной системы.

Большое значение в регуляции работы сердца имеют электро­литы. Катионы кальция повышают возбудимость клеток миокар­да, активируют фосфорилазу, участвуют в механическом сокраще­нии миофибрилл. Кальций усиливает сердечные сокращения, но при избытке его в крови сердце останавливается в состоянии си­столы, так как он в миофибриллах тормозит разобщение актино-вых и миозиновых нитей.

Катионы калия в повышенной концентрации снижают по­тенциал покоя миокардиоцитов и увеличивают калиевую про­ницаемость мембран. При небольшом превышении концентра­ции калий увеличивает возбудимость сердца, а при высокой - замедляет его работу и останавливает в фазе диастолы. Это явле­ние используют в кардиохирургии для остановки сердца. Сниже­ние калия в крови ниже физиологической нормы активизирует автоматию сердца, но при этом возможно нарушение сердеч-


ного ритма из-за стимуляции потенциальных пейсмекеров (на­пример, атриовентрикулярного узла).

На работу сердца влияют уровень кислорода, диоксида углеро­да и водородных ионов в крови. Снижение содержания кислорода в крови, увеличение диоксида углерода или ацидоз угнетают со­кратительную активность миокарда.

РЕГУЛЯЦИЯ ДЕЯТЕЛЬНОСТИ СЕРДЦА

Из всех внутренних органов сердце наиболее быстро реагирует на эмоциональное и физическое напряжения, связанные с измене­ниями внешней и внутренней среды организма, с трудовой деятель­ностью, спортом. При этом сила и частота сердечных сокращений (ЧСС) то увеличивается, то уменьшается. Например, при беге ЧСС может возрастать до 200 в минуту и более (в покое - 60-70). Такая же высокая ЧСС может быть в предстартовом состоянии у спорт­смена, при эмоциональном возбуждении. Механизмы регуляции деятельности сердца, как и любого мышечного органа, - нервный, гуморальный и миогенный. Нервная регуляция работы сердца осу­ществляется с помощью интра- и экстракардиальных нервов.

А. Экстраорганные нервы сердца (блуждающий и симпати­ческий нервы).

Открытие эфферентных влияний вегетативных нервов на деятельность сердца. В 1845 г. братья Веберы установили, что раз­дражение периферического отрезка блуждающего нерва вызывает торможение деятельности сердца (рис. 8.8). Раздражение симпа­тического нерва, как было обнаружено братьями Ционами (1867), вызывает увеличение ЧСС (рис. 8.9). И. П. Павлов (1887) обнару­жил нервные веточки звездчатого ганглия, раздражение которых только усиливает сокращения сердца без изменения ЧСС (усили­вающий нерв, оказывающий трофическое влияние на сердце).




тропное влияние парасимпатического нерва на предсердия выра­жено лучше, чем на желудочки.

Тонус симпатического нерва для сердца не выражен. Тонус блуждающих нервов выражен ярко, о чем свидетельствует тот факт, что перерезка блуждающих нервов в эксперименте или их блокада атропином вызывает сильнейшее повышение ЧСС (рис. 8.10 - А). После блокады симпатических нервов деятельность сердца не изменяется (рис. 8.10 - Б, В). Поскольку блуждающий нерв все время сдерживает деятельность сердца, уменьшение его тонуса ведет к учащению, а увеличение - к урежению сердечных сокращений, т.е. один и тот же нерв при наличии тонуса обеспечи­вает двоякий эффект и более совершенную регуляцию. Симпати­ческий нерв может только стимулировать сердечную деятельность, так как тонус у него для сердца невыражен. В спокойном состоянии ЧСС определяется тонусом блуждающего нерва и гуморальными веществами, циркулирующими в крови, а при эмоциональной и физической нагрузках ЧСС возрастает в результате уменьшения тонуса блуждающего нерва и возбуждения симпатической нервной системы.

Механизм передачи влияния симпатического и парасимпати­ческого нервов на сердце изучил О. Леви (1921). В опыте на двух изолированных сердцах лягушек он раздражал вагосимпатический ствол, иннервирующий одно сердце, и наблюдал торможение с по­следующим усилением и ускорением сердечной деятельности. Пер-фузирующий раствор от этого сердца попадал в другое сердце, что вызывало такие же изменения его деятельности, как и у первого сердца (рис. 8.11).

Положительное инотропное и хронотропное действие ка-техоламинов на сердце осуществляется за счет активации элек­трофизиологических и биохимических процессов. В частности, увеличивается проницаемость клеточных мембран для Ыа + и Са 2+ , поступление которых по медленным каналам в клетки ускоряет их деполяризацию (хронотропный эффект). Возрастание тока Са 2+ в клетки ведет также к усилению сокращений сердца (инотропный эфект). По мнению большинства исследователей, эффекты симпа­тического нерва реализуются посредством р-адренорецепторов. Роль а-адренорецепторов дискутируется. Симпатические нервы ускоряют проведение возбуждения в области атриовентрикуляр-ного узла. Возрастание скорости проведения возбуждения уве­личивает синхронизацию деполяризации и сокращения кардиоми-оцитов, что также усиливает сердечные сокращения. Норадреналин и адреналин активируют также метаболические процессы - рас­пад гликогена, обеспечивающего энергией сокращающееся сердце. Это осуществляется посредством активации внутриклеточного фермента аденилатциклазы, которая ускоряет образование цикли­ческого аденозинмонофосфата - цАМФ, последний активирует фосфорилазу, ускоряющую расщепление гликогена. Освобождение энергии обеспечивает усиление сокращений всех кардиомиоци-тов - и предсердий, и желудочков.

Афферентные волокна, идущие от сердца, имеются в блуж­дающих и симпатических нервах. Афферентная импульсация от механорецепторов сердца и сосудистых рефлексогенных зон игра­ет важную роль в регуляции деятельности сердца: по принципу отрицательной обратной связи она обеспечивает торможение деятельности сердца при высоком кровяном давлении и"усиле­ние сердечных сокращений при уменьшении кровяного давления. Эти эффекты реализуются с помощью эфферентных влияний блуж­дающего и симпатического нервов. Причем симпатические нервы включаются только при падении АД, поскольку тонус их для серд­ца не выражен. С барорецепторов полых вен и правого предсердия при повышении давления в них возникает рефлекторная тахикар­дия (рефлекс Бейнбриджа) вследствие возбуждения симпатиче­ской нервной системы. Этот рефлекс обеспечивает разгрузку пра­вого желудочка от повышенного притока крови к нему. Важную роль в регуляции деятельности сердца играют рефлексы, возникаю­щие с хеморецепторов синокаротидной и аортальной рефлексо­генных зон, а также других сосудов: в условиях гипоксии развива­ется рефлекторная тахикардия, а при дыхании человека чистым кислородом - брадикардия.


Б. Внутрисердечная нервная система образует перифери­ческие рефлекторные дуги, включающие афферентный нейрон, ден­дрит которого оканчивается рецептором растяжения на кардиоми-оцитах и коронарных сосудах, и эфферентный нейрон, аксон которого заканчивается на кардиомиоцитах. Внутрисердечная реф­лекторная дуга может иметь вставочный нейрон. Нейроны внутри-сердечной нервной системы расположены поодиночке и собраны в ганглии. Основная масса их находится в непосредственной близос­ти от сино-атриального и атрио-вентрикулярного узлов. Они вмес­те с эфферентными волокнами образуют внутрисердечные нервные сплетения. Большинство нервных волокон проходит в межпредсерд-ной перегородке. Внутрисердечная нервная система при высоком давлении в аорте угнетает сердечную, при низком - стимулирует, т. е. она стабилизирует давление в артериальной системе, предуп­реждает резкие колебания давления в аорте.



В. Миогенный механизм регуляции - ослабление или уве­личение силы сокращений сердца за счет изменения интенсивнос­ти функционирования кардиомиоцитов при исключении влияния на них экстра- и интраорганной нервной системы, а также гумо­ральных факторов. Различают гетеро- и гомеометрический миоген-ные механизмы регуляции деятельности сердца. Это регуляция на уровне клеток.

Гетерометрический миогенный механизм регуляции силы со­кращений сердца открыл О. Франк (1895) - он обнаружил, что пред­варительное растяжение полоски сердечной мышцы увеличивает силу ее сокращения. Позднее Э. Старлинг (1918) провел подобные исследования на сердечно-легочном препарате. Растяжение долж­но быть умеренным, обеспечивающим максимальное число зон сцеп­ления с помощью миозиновых мостиков нитей актина и миозина. Увеличению силы сокращений сердца при увеличении растяжения его стенок способствуют и дополнительный выход Са 2+ из сарко-плазматического ретикулума, а также эластические растянутые элементы. Кальций увеличивает число миозиновых мостиков, вза­имодействующих с нитями актина. Значение механизма Франка -Старлинга заключается в усилении сердечной деятельности в слу­чае увеличения притока крови к сердцу .

Гомеометрический миогенный механизм - увеличение силы сокращений без предварительного растяжения миокарда - наблю­дается при возрастании частоты сердцебиений (ритмо-инотропная зависимость). Эта зависимость проявляется и на изолированной полоске миокарда. Если постепенно увеличивать частоту раздра­жений, то одновременно с увеличением частоты сокращений по­лоски миокарда возрастает и сила сокращений. Увеличение силы

сокращений сердца с возрастанием ЧСС объясняется накоплением Са 2+ в цитоплазме кардиомиоцитов - их больше выделяется из сар-коплазматического ретикулума и больше входит из межклеточных пространств. Кальциевая помпа не успевает перекачивать ионы обратно. Ионы Са 2+ , как известно, обеспечивают взаимодействие нитей актина и миозина при возбуждении мышечного волокна.

Г. Гуморальный механизм регуляции. Различные биологи­чески активные вещества (гормоны, пептиды, медиаторы) и мета­болиты оказывают разнонаправленное влияние на силу и ЧСС.

Гормоны. Кортикоиды, ангиотензин, серотонин, адреналин, норадреналин, вазопрессин, глюкагон увеличивают силу сокраще­ний сердца. Тироксин увеличивает ЧСС, чувствительность сердца к симпатическим воздействиям. При эмоциональном возбуждении и физической нагрузке вследствие активации симпато-адреналовой системы количество катехоламинов в крови возрастает, сила и ЧСС увеличиваются. Механизм действия разных гормонов на сердце различен. Однако многие из них свое влияние реализуют посред­ством активации аденилатциклазы, которая находится на внутрен­ней стороне клеточной мембраны. Аденилатциклаза ускоряет об­разование циклического аденозинмонофосфата (цАМФ) из молекул АТФ. Под действием цАМФ происходит ряд биохимических пре­вращений.

Вклад медиаторов, циркулирующих в крови, в обеспечение регуляторных приспособительных реакций сердца незначителен. Некоторые из них, например ацетилхолин, быстро разрушаются. Норадреналин и адреналин выбрасываются в кровь не только сим­патическими окончаниями, но и хромаффинными клетками. В сер­дце они действуют на р-рецепторы и стимулируют его деятельность (значение а-адренорецепторов дискутируется).

Метаболиты оказывают как стимулирующее, так и угнетаю­щее влияние на деятельность сердца. Снижение концентрации калия вне клетки ниже нормы (4 ммоль/л) приводит, главным образом, к повышению активности пейсмекера, при этом активи­зируются также гетеротропные очаги возбуждения, что может со­провождаться нарушениями ритма. Са 2+ усиливает сердечные сокращения, улучшает электромеханическое сопряжение, активи­рует фосфорилазу, что способствует освобождению энергии. Ионы НС0 3 ~ угнетают сердечную деятельность. Снижение рН и умень­шение 0 2 угнетают, а повышение рН усиливает сердечную дея­тельность. Повышение температуры увеличивает, а понижение снижает ЧСС. Закисление среды возбуждает симпатические цен­тры. Стимулирует сердечную деятельность эндетелин (пептид эн-дотелиоцитов).


Корковые влияния. Кора большого мозга может оказывать раз­нонаправленные влияния на работу любого внутреннего органа. Наиболее ярко это проявляется на деятельности сердца. Кора реа­лизует свое влияние посредством вегетативной нервной системы и эндокринных желез. Эмоциональное возбуждение сопровождает­ся учащением сердцебиений. Отрицательная эмоция может сопро­вождаться спазмом коронарных сосудов и болевыми ощущениями. Напротив, положительные эмоции оказывают благоприятное вли­яние на сердце.

Центральная нервная система вместе с рядом гуморальных факторов обеспечивает регулирующее влияние на работу сердца, приспосабливая ее к конкретным условиям, в которых находится животное. Различают интракардиальную регуляцию , осуществляемую за счет рефлекторных дуг, замыкающихся в интрамуральных (внутрисердечных) ганглиях миокарда и экстракардиальную регуляцию , обеспечиваемую импульсами поступающими из ЦНС к сердцу по симпатическим и парасимпатическим нервам (рис. 12.).

Рис. 12. Симпатическая и парасимпатическая иннервация сердца.

Сц- сердце; К- кора мозга; Гт- гипоталамус; Гф- гипофиз; Цсд- центр сердечной деятельности; Пм- продолговатый мозг; СГ- симпатический ганглий; См – спинной мозг; Тh- грудной отдел; 1- блуждающий нерв; 2- симпатические нервы; звездчатый ганглий (узел).

В продолговатом мозге расположены нейроны, аксоны которых в составе блуждающих нервов идут в интрамуральные ганглии сердца, где располагаются вторые нейроны. Отростки последних нейронов иннервируют узлы проводящей системы и миокард, главным образом, предсердий. Симпатическая иннервация берет начало в боковых рогах 1-5 грудных сегментов спинного мозга. Отростки этих нейронов доходят до шейного и звездчатого ганглиев, от которых выходит постганглионарные симпатические волокна, иннервирующие проводящую систему и миокард желудочков.

Влияние блуждающих нервов на работу сердца впервые было установлено братьями Вебер (1845). Импульсы, поступающие к сердцу по волокнам блуждающих нервов, вызывают замедление частоты сердечных сокращений (отрицательный хронотропный эффект) до полной их остановки, что зависит от силы и частоты стимуляции блуждающего нерва, а также от степени угнетения синоатриального узла. В случае длительного раздражения блуждающего нерва остановившееся сердце, снова начинает сокращаться хотя и в несколько редком ритме. Это явление называют ускользанием сердца из-под влияния блуждающего нерва. По поводу возникновения этого явления существует много различных мнений. Наряду с хронотропным влиянием блуждающие нервы уменьшают и силу сердечных сокращений (отрицательный инотропный эффект ), снижают возбудимость миокарда (отрицательный батмотропный эффект ) и скорость проведения по сердцу возбуждения (отрицательный дромотропный эффект ).

Влияние симпатических нервов изучалось Бецольдом (1863), братьями Цион (1866), И.П. Павловым. Было установлено, что в противоположность блуждающим симпатические нервы вызывают все четыре положительных эффекта.

Благодаря этой двойной иннервации (рис.13.) обеспечивается приспособляемость работы сердца к потребностям организма, что достигается путем регуляции разной степени влияния на сердце этих нервов.


Рис. 13. Влияние блуждающего нерва на работу сердца:

1- действие блуждающего нерва; 2- действие симпатического нерва.

Некоторые исследователи считают, что при срочно необходимом усилении работы сердца проявляется вначале ослабление вагусного влияния и только несколько позже присоединится активирующее действие симпатических нервов.

И.П. Павлов (1887) при раздражении отдельных веточек, проходящих в симпатических нервах, наблюдал увеличение силы сердечных сокращений без заметного повышения их частоты. Если же раздражать веточки, проходящие в стволе блуждающих нервов, то сила сокращений сердца будет меньшей. И.П. Павлов считал, что эти нервные волокна оказывают влияние на метаболические процессы в миокарде. В одних случаях они усиливаются, в других – снижаются. Эти нервные волокна были названы И.П. Павловым трофическими.

На работу сердца влияют и разнообразные рефлекторные реакции, вызываемые раздражения от многочисленных экстеро– и интерорецепторов. Раздражение проприорецепторов сокращающимися мышцами рефлекторно стимулирует сердечную деятельность и движение крови по сосудистой системе. Это дало основание для названия мышц дополнительными сердцами. Работа сердца тормозится при раздражении рецепторов ряда полых органов. Например, известный в физиологии вагональный рефлекс Гольца, вызывающий резкое замедление работы сердца при раздражении рецепторов желудка, кишечника, брюшины, что происходит не только в эксперименте, но и при ряде патологических процессов в этих органах.

Среди рефлекторных влияний на сердце важное значение имеют импульсы, возникающие в рецепторах, расположенных в дуге аорты и каротидном синусе (рис. 14.). В этих зонах располагаются баро– и хеморецепторы. Участки этих сосудистых зон называются рефлексогенными зонами .

Рис.14. Синокаротидная и аортальная рефлексогенные зоны:

1- аорта; 2- общие сонные артерии; 3- каротидный синус; 4- синусный нерв; 5- аортальный нерв; 6- каротидное тельце; 7- блуждающий нерв; 8- языкоглоточный нерв; 9- внутренняя сонная артерия.

В дуге аорты располагается первая рефлексогенная зона нерва депрессора (аортальный нерв), раздражение рецепторов которого ведет к значительному снижению величины кровяного давления (рис. 15.).

Вторая зона – в каротидном синусе, где находятся рецепторы синокаротидного нерва (нерв Геринга), идущего в продолговатый мозг в составе языкоглоточного нерва.

Раздражение барорецепторов (механорецепторов) повышением давления крови и растяжением стенок этих сосудистых зон увеличивает тонус блуждающего нерва, вследствие чего работа сердца рефлекторно замедляется и кровяное давление снижается до нормальной величины.

Рис. 15. Рефлекторное падение кровяного давления под влиянием раздражения аортального нерва.

Раздражение хеморецепторов этих зон, увеличенным содержанием в крови угольной кислоты, концентрации водородных ионов, недостатком кислорода и т.д. ведет к повышению тонуса симпатических нервов, а следовательно, к усилению работы сердца, сужению просвета сосудов и как результат – к повышению давления.

В устье полых вен располагается третья рефлексогенная зона, раздражение барорецепторов которой большим количеством крови повышает влияние симпатических нервов, что приводит к увеличению частоты и силы сердечных сокращений, кровь в большом количестве перекачивается из вен в артерии, в результате чего давление в полых венах снижается до нормальной величины. Это явление носит название рефлекса Бейнбриджа.

Работа сердца находится и под влиянием условнорефлекторных импульсов, идущих от центров гипоталамуса и других структур головного мозга, в том числе его коры. Примером этого служат факты изменения сердечной деятельности под влиянием сказанного слова, разнообразных эмоциональных факторов, о чем красноречиво сказал И.П. Павлов: «сердце прыгает от радости, бьется любовью, сердце колотится от страха, сжалось от жалости. Условнорефлекторные изменения работы сердца наблюдаются при предстартовых состояниях человека и у животных при различных манипуляциях, связанных с подготовкой к работе. Возможна выработка и условных сердечных рефлексов на посторонний, индифферентный раздражитель.

Именно этот орган является незаменимым и важным для человеческого организма. Именно при его полноценной работе происходит обеспечение постоянной и полноценной деятельности всех органов, систем, клеток. Сердце подает к ним питательные вещества и кислород, гарантирует очистку организма от веществ, образующихся в результате обмена веществ.

В некоторых ситуациях нарушается регуляция работы сердца. Рассмотрим вопросы, связанные с осуществлением деятельности главного органа человеческого организма.

Особенности функционирования

Как осуществляется регуляция работы сердца и кровеносных сосудов? Данный орган является сложным насосом. В его составе есть четыре различных отдела, называемых камерами. Два именуют левым и правым предсердиями, а два называют желудочками. Сверху располагаются довольно тонкостенные предсердия, основная масса сердца распределена на мышечные желудочки.

Регуляция работы сердца связана с перекачиванием крови при ритмичных сокращениях и расслаблениями мышц этого органа. Время сокращения называют систолами, промежуток, соответствующий расслаблениям, называют диастолами.

Кровообращение

Сначала осуществляется сокращение предсердий в систолу, потом функционируют предсердия. Венозная кровь собирается по организму, поступает в правое предсердие. Здесь жидкость выталкивается, проходит в правый желудочек. Участок будет нагнетать кровь, направляя ее в Именно так именуют сосудистую сеть, пронизывающую легкие. На данном этапе происходит газообмен. Кислород воздуха поступает в кровь, насыщает ее, из крови выделяется углекислый газ. Обогащенная кислородом кровь направляется к левому предсердию, затем она поступает внутрь левого желудочка. Именно эта часть сердца является самой сильной и крупной. В ее обязанности входит выталкивание крови через аорту в большой круг кровообращения. Она поступает по организму, выводя из него углекислый газ.

Особенности функционирования сосудов и сердца

Регуляция работы сердца и сосудов связана с электрической системой. Именно она обеспечивает ритмичное биение сердца, его периодичное сокращение, расслабление. Поверхность этого органа покрыта многочисленными волокнами, способными генерировать, передавать разные электрические импульсы.

Сигналы зарождаются внутри синусового узла, называемого «водителем ритма». Данный участок находится на поверхности правого основного предсердия. Вырабатываясь в нем, сигнал проходит через предсердия, являясь причиной сокращений. Затем импульс подразделяется на желудочки, создавая ритмичное сокращение волокон мышц.

Колебания сокращений сердечной мышцы составляют у взрослого человека диапазон от шестидесяти до восьмидесяти сокращений за минуту. Именно их и называют сердечным импульсом. Для фиксации активности электрической системы сердца периодически проводят электрокардиограммы. С помощью таких исследований можно увидеть формирование импульса, а также его передвижение по сердцу, выявить нарушения в подобных процессах.

Нервно-гуморальная регуляция работы сердца связана с внешними и внутренними факторами. Например, учащенные сердцебиения наблюдаются при серьезном эмоциональном напряжении. В процессе работы происходит регулировка гормона адреналина. Именно он способен увеличивать частоту сердечных сокращений. работы сердца позволяет выявлять различные проблемы с нормальным сердцебиением, своевременно их устранять.

Нарушения в работе

Медицинские работники под такими сбоями подразумевают разнообразные нарушения полноценного сокращения ритма сердца. Подобные проблемы могут быть вызваны разнообразными факторами. Например, регуляция работы сердца происходит при электролитических и эндокринных недугах, вегетативных заболеваниях. Кроме того, проблемы появляются и при интоксикации некоторыми медикаментами.

Распространенные виды нарушений

Нервная регуляция работы сердца связана с сокращениями мышцы. Синусная тахикардия вызывает учащения сокращений сердца. Кроме того, возможны такие ситуации, при которых количество сокращений сердца уменьшается. Такое заболевание в медицине называют синусовой брадикардией. Среди опасных нарушений, связанных с деятельностью сердца, отметим параксизамальную тахикардию. При ее наличии происходит внезапный рост количества биений сердца до ста в минуту. Пациента необходимо поместить в горизонтальном положение, срочно вызвать врача.

Регуляция работы сердца связана с мерцательной аритмией, экстрасистолией. Любые нарушения в нормальном сердечном ритме должны стать сигналом для обращения к кардиологу.

Автоматика функционирования

В состоянии покоя сердечная мышца сокращается за одни сутки примерно сто тысяч раз. Оно за этот временной промежуток перекачивает порядка десяти тонн крови. Сократительная обеспечивается сердечной мышцей. Она относится к поперечнополосатой мышце, то есть имеет специфическое строение. В ней присутствуют определенные клетки, в которых появляется возбуждение, оно передается на стенки мышц желудочков и предсердий. Сокращения отделов сердца происходят поэтапно. Сначала осуществляется сокращение предсердий, потом желудочков.

Автоматией называют способность сердца сокращаться ритмично под воздействием импульсов. Именно эта функция гарантирует независимость между нервной системой и функционированием сердца.

Цикличность работы

Зная, что среднее количество сокращений в минуту составляет 75 раз, можно вычислить продолжительность одного сокращения. В среднем оно длится около 0,8 секунды. Полный цикл состоит из трех фаз:

  • в течение 0,1 секунды осуществляется сокращение обоих предсердий;
  • 0,3 секунды длится сокращение левого и правого желудочков;
  • около 0,4 секунды идет общее расслабление.

Расслабление желудочков происходит примерно за 0,4 секунды, для предсердий такой временной промежуток составляет 0,7 секунды. Этого времени вполне достаточно для того, чтобы в полной мере восстановить работоспособность мышцы.

Факторы, влияющие на работу сердца

Сила и частота сердечных сокращений связаны с внешней и внутренней средой человеческого организма. При резком увеличении количества сокращений наблюдается выработка сосудистой системой огромного количества крови за единицу времени. При уменьшении силы и частоты сердцебиений снижается выброс крови. В обоих случаях возникает изменение снабжения кровью человеческого организма, что негативно отражается на его состоянии.

Регулировка работы сердца осуществляется рефлекторно, в ней участвует автономная нервная система. Импульсы, которые приходят к сердцу по парасимпатическим нервным клеткам, будут замедлять, ослаблять сокращения. Усиление и учащение сердцебиений обеспечивается симпатическими нервами.

Гуморальная работа «человеческого мотора» связана с функционированием биологически активных веществ и ферментов. К примеру, адреналин (гормон надпочечников), соединения кальция способствуют учащению и усилению сердечных сокращений.

Соли калия, напротив, способствуют снижению числа сокращений. Для приспособления сердечно-сосудистой системы к внешним условиям применяют гуморальные факторы и функционирование нервной системы.

Во время выполнения физической работы наблюдается поступление импульсов от рецепторов сухожилий и мышц в центральную нервную систему, регулирующую работу сердца. В итоге наблюдается усиление притока к сердцу импульсов по симпатическим нервам, в кровь выбрасывается адреналин. Из-за роста числа сердечных сокращений организм нуждается в дополнительном количестве питательных веществ и кислороде.

Приспособление деятельности сердца к изменяющимся потребностям организма происходит при помощи ряда регуляторных механизмов.

Изменение уровня физической и эмоциональной нагрузки организма фиксируется различными рецепторами (хеморецепторами, механорецепторами), расположенными в различных органах, а также в стенках кровеносных сосудов. Воспринимаемые ими изменения состояния рефлекторно вызывают ответную реакцию в виде изменения уровня сердечной деятельности.

Быстрое и точное приспособление кровообращения к конкретным потребностям организма достигаются благодаря совершенным и многообразным механизмам регуляции работы сердца. Эти механизмы можно подразделить на три уровня:

ВНУТРИСЕРДЕЧНАЯ РЕГУЛЯЦИЯ (САМОРЕГУЛЯЦИЯ ) связана с тем, что:

сами клетки миокарда способны изменять силу сокращения в зависимости от степени их растяжения накапливать конечные продукты обмена, вызывающие изменение работы сердца.

НЕРВНАЯ РЕГУЛЯЦИЯ осуществляется деятельностью автономной нервной системы - симпатической и парасимпатической биологически активные вещества, изменяющие силу их сокращений и т.д. Нервные импульсы, поступающие к сердцу по ветвям блуждающего нерва (парасимпатические импульсы) уменьшают силу и частоту сокращений. Импульсы, приходящие к сердцу по симпатическим нервам (их центры находятся в шейном отделе спинного мозга), повышают частоту и силу сердечных сокращений.

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ связана с изменением деятельности сердца под влиянием биологически активных веществ и некоторых ионов. Например, адреналин, норадреналин (гормоны коры надпочечников), глюкагон (гормон поджелудочной железы), серотонин (вырабатывается железами слизистой кишечника), тироксин (гормон щитовидной железы) и др., а также ионы кальция усиливают сердечную деятельность. Ацетилхолин, ионы калия уменьшают работу сердца.

Сердце - это мощный насос, перекачивающий по кровеносным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы помочь ему адаптироваться к новым условиям, сердце также должно перестроить свою работу. Это достигается за счет деятельности ряда регуляторных механизмов.

РЕГУЛЯЦИЯ ТОНУСА СОСУДОВ.

Механизмы, регулирующие сосудистый тонус, можно условно разделить: 1) на местные, периферические, регулирующие кровоток в отдельном органе или участке ткани независимо от центральной регуляции,

2) центральные, поддерживающие уровень АД и системное кровообращение.

МЕСТНЫЕ РЕГУЛЯТОРНЫЕ МЕХАНИЗМЫ

Они реализуются уже на уровне эндотелия сосудов, который обладает способностью вырабатывать и выделять биологически активные вещества, способные расслаблять или сокращать гладкие мышцы сосудов в ответ на повышение АД. Эндотелий сосуда рассматривается как эндокринная железа, способная выделять свой секрет, который затем действует на гладкую мышцу сосуда и изменяет ее тонус.

Увеличение АД растягивает клеточную мембрану, что увеличивает спонтанную активность гладких мышц и приводит к повышению их тонуса.

ЦЕНТРАЛЬНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ

Эти механизмы обеспечиваются волокнами, иннервирующими сосудистую стенку, а также влияниями центральной нервной системы.

Вазоконстрикторный эффект симпатических нервов был показан Клодом Бернаром (1851 г.), перерезавшим на шее у кролика с одной стороны симпатический нерв. В результате сосуды уха на стороне перерезки нерва расширились, а ухо стало красным и горячим. Раздражение периферического конца перерезанного симпатического нерва привело к резкому сужению сосудов, а ухо стало бледным и холодным.

Для сосудов брюшной полости главный вазоконстриктор - это нерв, в составе которого проходят симпатические волокна. Значит, симпатический нерв - основной вазоконстриктор, поддерживающий тонус сосудов на том или ином уровне в зависимости от количества импульсов, поступающих по его волокнам к сосуду. Свое влияние на сосуды симпатический нерв оказывает через норадреналин, в результате происходит сужение сосуда.

Вазодилататорный эффект был получен при раздражении других парасимпатических нервов: языкоглоточного, расширяющего сосуды миндалин, околоушной железы, задней трети языка; верхнегортанного нерва - веточки блуждающего нерва, расширяющего сосуды слизистой гортани и щитовидной железы; тазового нерва, расширяющего сосуды органов малого таза.

ВЕНТИЛЯЦИЯ ЛЕГКИХ.

ВЕНТИЛЯЦИЯ ЛЁГКИХ - это управляемый процесс, представляющий собой активный транспорт газовых смесей во время дыхательных движений в лёгкие и из лёгких. При вдохе кислород с вдыхаемой газовой смесью (вдыхаемым воздухом) переносится через дыхательные пути в лёгочные ацинусы, а двуокись углерода при выдохе с выдыхаемой газовой смесью переносится из лёгочных ацинусов наружу, в среду организма. Таким образом, вентиляция лёгких состоит из двух процессов: вентиляции дыхательных путей и вентиляции лёгочных ацинусов.

Главная ЦЕЛЬ ВЕНТИЛЯЦИИ ЛЁГКИХ - обеспечение устойчивой непрерывной доставки в лёгочные альвеолы кислорода и устойчивого непрерывного выведения из организма двуокиси углерода.

Вентиляция лёгких является результатом дыхательных движений. Дыхательные движения аппарата внешнего дыхания обеспечиваются ритмическими сокращениями дыхательных мышц.

Величина легочной вентиляции определяется глубиной дыхания и частотой дыхательных движений. Количественной характеристикой легочной вентиляции служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ (МОД) - объем воздуха, проходящий через легкие за 1 минуту. МОД, который у человека в покое составляет в среднем 8 л/мин. МАКСИМАЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений, Максимальная вентиляция возникает во время интенсивной работы, при недостатке содержания 0 2 (гипоксия) и избытке СО 2 (гиперкапния) во вдыхаемом воздухе.

Для оценки вентиляционной функции легких, состояния дыхательных путей, изучения дыхания применяются различные методы исследования: ПНЕВМОГРАФИЯ, СПИРОМЕТРИЯ, СПИРОГРАФИЯ, ПНЕВМОСКРИН . С помощью спирографа можно определить и записать величины легочных объемов воздуха, проходящих через воздухоносные пути человека. При спокойном вдохе и выдохе через легкие проходит сравнительно небольшой объем воздуха. Это ДЫХАТЕЛЬНЫЙ ОБЪЕМ (ДО), который у взрослого человека составляет примерно 500 мл. При глубоком вдохе человек может дополнительно вдохнуть еще определенный объем воздуха. Этот РЕЗЕРВНЫЙ ОБЪЕМ ВДОХА (РОвд) - максимальный объем воздуха, который способен вдохнуть человек после спокойного вдоха. Величина резервного объема вдоха составляет у взрослого человека примерно 1,8-2,0 л. После спокойного выдоха человек может при глубоком выдохе дополнительно выдохнуть еще определенный объем воздуха. Это РЕЗЕРВНЫЙ ОБЪЕМ ВЫДОХА (РОВЫД), величина которого составляет в среднем 1,2 - 1,4 л. Объем воздуха, который остается в легких после максимального выдоха и в легких мертвого человека, - ОСТАТОЧНЫЙ ОБЪЕМ ЛЕГКИХ (00). Величина остаточного объема составляет 1,2 -1,5 л.

ЕМКОСТИ ЛЕГКИХ:

ОБЩАЯ ЕМКОСТЬ ЛЕГКИХ (ОЕЛ) - объем воздуха, находящегося в легких после максимального вдоха;

ЖИЗНЕННАЯ ЕМКОСТЬ ЛЕГКИХ (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ - это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе.

ЕМКОСТЬ ВДОХА (ЕД.) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 - 2,5 л;

Воздух, находящийся в воздухоносных путях (полость рта, носа, глотки, трахеи, бронхов и бронхиол), не участвует в газообмене, и поэтому пространство воздухоносных путей называют ВРЕДНЫМ ИЛИ МЕРТВЫМ ДЫХАТЕЛЬНЫМ ПРОСТРАНСТВОМ. Во время спокойного вдоха объемом 500 мл в альвеолы поступает только 350 мл вдыхаемого атмосферного воздуха. Остальные 150 мл задерживаются в анатомическом мертвом пространстве. Составляя в среднем треть дыхательного объема, мертвое пространство снижает на эту величину эффективность альвеолярной вентиляции при спокойном дыхании.

Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ. В покое у человека минутный объем дыхания составляет 6-8 л/мин.


Похожая информация.




Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии