Реферат влияние ультразвука на организм человека. Влияние ультразвука на организм. (Ультразвук) Как снижается вредное воздействие ультразвука

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Эпопея строительства Байкало-Амурской железнодорожной магистрали и освоения прилегающих к ней территорий, решения связанных с ними медико-биологических проблем не канула в Лету. Она в научный трудах, в памяти участников, в накопленном огромном

опыте проведения крупномасштабных комплексных исследований, результаты которых, часто имеющие общебиологическое значение, могут быть применимы к любыш регионам с экстремальными условиями существования человека.

RESEARCHES OF EMPLOYEES OF FACULTY OF HOSPITAL THERAPY ISMI AND THE ACADEMIC GROUP K.R. SEDOVS IN THE ZONE OF CONSTRUCTION OF THE BAIKALAMUR RAILWAY

Y.V. Zobnin (Irkutsk State Medical University)

The historical sketch of scientific-practical researches and other actions under the decision of medical and biologic problems of region of construction of a Baikal-Amur trunk-railway and new economic development of the adjoining territories which have been carried out by employees of faculty of hospital therapy of Irkutsk state medical institute and the academic group under the direction of the full member of Academy of Medical Sciences of the USSR K.R. Sedova is submitted.

© ШЕВЧЕНКО Е.В., ХЛОПЕНКО H.A. - 2006

ДЕЙСТВИЕ УЛЬТРАЗВУКА НА ОРГАНИЗМ

Е.В. Шевченко, H.A. Хлопенко

(Иркутский государственный медицинский университет, ректор - д.м.н., проф. И.В. Малов, кафедра медицинской и

биологической физики, зав. - д.б.н., проф. Е.В. Шевченко)

Резюме. Показано, что основные характеристики ультразвука (частота, интенсивность, длительность воздействия) в значительной мере определяют особенности распространения его в среде и биотканях. При распространении ультразвука в биотканях проявляется ряд эффектов (механический, термический, физико-химический), который приводит к некоторым отклонениям от физических законов его распространения в веществе, характер которых необходимо учитывать при проведении диагностических и терапевтических мероприятий. Ключевые слова. Ультразвук, характеристики, биологическая ткань, диагностика._

Современная клиническая медицина немыслима без мощного диагностического обеспечения, без которого принципиально невозможно выгработатъ и своевременно корректировать план адекватного лечения. В основе такого обеспечения лежит использование высоких технологий лучевой диагностики, позволяющей визуализировать нормальные и патологические ткани организма человека с помощью различный физических агентов. Состав лучевой диагностики сейчас включает рентгенодиагностику, в том числе рентгеновскую компьютерную томографию, радионуклидную диагностику, ультразвуковые исследования (УЗИ), магнитно-резонансную визуализацию, термографию и некоторые другие, менее распространенные, диагностические технологии.

По диагностической значимости важное место занимают УЗИ. Ультразвуковая диагностика позволяет без нарушения кожных покровов и без особенного вмешательства в физиологические процессы организма изучать положение, форму, размеры, состояние поверхности и внутреннее строение всех органов человека, а также оценивать их функциональное состояние.

Ультразвук представляет собой механические колебания упругой среды, занимающий область выше 16000 Гц. Верхний предел спектра ультразвуковык колебаний не установлен. В медицине применяется ультразвук относительно высокой частоты 800^3000 кГц. Для полу-

чения улыгразвука в настоящее время применяются спе-циалыные устройства, в который исполызуются пыезоэ-лектрический, магнитострикционный, электродинамический, аэро- и гидродинамический эффекты.

Частотная характеристика и длина волны в значи-телыной мере определяют особенности распространения колебаний в окружающей среде. Если низкочастотный улытразвук обладает способностыю распростра-нятыся в воздушной среде, то улытразвук высокой частоты практически в воздухе не распространяется за счет силыного поглощения. При короткой длине волны улы-тразвук может фокусироватыся и направлятыся линейным пучком. С уменышением длины волны снижается способность волны к дифракции, что создает благоприятные условия для экранирования.

Происходящие в улытразвуковой волне колебателы-ные движения частиц вещества характеризуются очены малой амплитудой смещения и чрезвыиайно болыши-ми ускорениями. Так, при частоте 880 кГц и при интенсивности 2 Вт/см2, частицы тканей тела колеблются с амплитудой 3,5- 10-6 см. Максималыное ускорение при этом достигает 90- 104 см/с2, что превышает ускорение свободного падения тел почти в 100 тысяч раз. Скоросты распространения улытразвука в тканях человека и жи-вотныгх колеблется от 1490 до 1610 м/с, т. е. почти не отличается от скорости распространения улытразвука в

воде. Существенное влияние на скорость ультразвука оказывает температура среды. При повышении температуры воздуха на 1° скорость увеличивается на 0,5 м/с. При температуре воздуха 0° скорость звука и ультразвука - 331,5 м/с, а при температуре +18°С она увеличивается до 342 м/с. Повышение температуры воды на 1° приводит к увеличению скорости на 2,5 м/с.

Помимо указанных параметров (частоты, длины волны и скорости), ультразвук характеризуется интенсивностью. В медицинской практике по интенсивности ультразвуковые колебания подразделяют на три диапазона: до 1,5 Вт/см2 - малая; 1,5 3 Вт/см2 - средняя; 3^10 Вт/см2 - большая интенсивность.

При переходе ультразвука из одной среды часть энергии проходит во вторую среду, а часть - отражается. Отражение зависит от акустического сопротивления сред. Чем больше отличаются величины акустического сопротивления двух сред, тем больше отражение ультразвуковых волн на границе раздела. Например, акустическое сопротивление воздуха 41 г-с/см2, а воды 15-104 г-с/см2. Вследствие большой разницы этих величин коэффициент отражения на границе раздела - 0,9993, т.е. из воздуха в воду и обратно проходит около 0,1% энергии. Так же плохо ультразвук распространяется из металла в воздух и обратно.

Известно, что ультразвуковые колебания хорошо распространяются из воды в биологические ткани и, наоборот, плохо проходят из воздуха в ткани. Так, установлено, что коэффициент поглощения ультразвука, распространяющегося из воздуха в кожу, такой же, как на границе воздух-вода.

Но при этом нельзя делать заключение, что ультразвук не проникает в ткани и почти полностью отражается от поверхности тела, так как необходимо учитывать строение кожи, не игнорируя то обстоятельство, что она состоит из разных по влагосодержанию тканей. Поверхностный слой кожи (эпидерма) содержит мало влаги и не может быть отождествлен с этой точки зрения с внутренними органами, мышечной тканью и тем более с водой. Нужно помнить также и небольшую толщину эпидермы. Не исключено, что и по этой причине она не может быть серьезным препятствием для распространения ультразвука в более глубокие слои кожи. Поглощение ультразвука тканями человека изучалось с целью выяснения возможного влияния его на организм. Однако на основании только величины коэффициента поглощения нельзя предрешить биологический эффект. Очевидно, следует учитывать и явления отражения, происходящие в тканях, что может приводить к усилению биологического эффекта.

Выше изложенное свидетельствует о необходимости аналитического подхода к оценке установленных физиками относительных величин. При решении гигиенических вопросов необходимо исходить, прежде всего, из их биологической значимости.

При распространении ультразвуковых колебаний в различных средах их интенсивность ослабевает обратно пропорционально квадрату расстояния от источника. Потеря энергии происходит вследствие поглощения ультразвука средами, в которых он распространяется. Поглощение обусловлено вязкостью и теплопроводностью среды. Установлено, что поглощение ультразвука в воздухе примерно в 2000 раз больше, чем в воде. По-

глощение также зависит от частоты ультразвуковых колебаний и увеличивается пропорционально квадрату частоты. Поэтому затухание ультразвуковых волн при повышении частоты быстро растет.

Следует отметить, что совершенно не подчиняется общим физическим закономерностям поглощение ультразвука в биологических тканях. В биологических тканях существует не квадратичная, а линейная зависимость поглощения от частоты. Это объясняется большой неоднородностью тканей. Неоднородностью биологических тканей обусловлена и разная степень поглощения ультразвука. Например, наименьшее поглощение наблюдается в жировом слое и почти вдвое большее в мышечной ткани. Серое вещество мозга в 2 раза больше поглощает ультразвук, чем белое. Мало абсорбирует ультразвуковую энергию спинномозговая жидкость. Наибольшее поглощение наблюдается в костной ткани.

При распространении ультразвука в среде проявляется ряд эффектов, основными из них являются: механический, термический и физико-химический. Прохождение ультразвука в средах сопровождается их нагреванием вследствие превращения акустической энергии в тепловую в результате поглощения ультразвука. Кроме того, образование тепла обусловлено физическими явлениями, вызывающими так называемый эффект пограничных поверхностей. Сущность его заключается в усилении действия ультразвука на границе раздела двух сред, что приводит к усилению теплового эффекта в несколько раз. Это связано с отражением колебаний от пограничных поверхностей: чем больше отражение, тем больше выражено их действие, т.е. с увеличением поверхности, отражающей колебания, тепловое действие усиливается. При проведении ультразвуковой терапии при плотном прилегании источника ультразвука к коже у пациента не наблюдается неприятных ощущений. Но если между кожей и головкой излучателя имеется небольшая прослойка воздуха, появляется ощущение жжения. Усиление термического эффекта обусловлено интенсивным отражением ультразвуковых колебаний на границе кожа-воздух вследствие большой разницы в их акустическом сопротивлении.

Механический эффект, в свою очередь, обусловлен самой природой ультразвука, представляющего собой волновое движение газообразных, жидких и твердых сред, и связан с переменным акустическим давлением во время сжатия и растяжения среды и силами, развивающимися вследствие больших ускорений частиц. Этим определяется размельчающее и диспергирующее действие ультразвука.

Известно, что возбуждение ультразвуковых колебаний в жидкости сопровождается кавитацией. В жидкости при распространении упругих волн возникают последовательно фазы сжатия и разряжения. В фазе разряжения в отдельных участках жидкости образуются разрывы или полости, которые заполняются парами жидкости или растворенными в ней газами. Последующее сжатие приводит к захлопыванию образовавшихся пузырьков. Перед захлопыванием в них создается большое давление. Поэтому в момент исчезновения пузырьков происходят мощные гидравлические удары, обладающие большой разрушительной силой. Помимо освобождения механической энергии, образование кави-тационных полостей сопровождается возникновением

электрических зарядов на пограничных поверхностях, вызывающих люминесцентное свечение и ионизацию молекул воды, распадающихся на свободные гидро-ксильные радикалы и атомарный водород. В химическом отношении продукты распада ионизированных молекул воды крайне активны. Именно их большой активностью обусловлен ряд общебиологических эффектов, проявляющихся под влиянием ультразвука. В частности, с этим связано его окисляющее действие; распад белков в ультразвуковом поле; деполимеризация белковых соединений, инактивация ферментов, ускорение химических реакций.

Исследования биологического действия высокочастотного ультразвука на животных и человека были вызваны в основном потребностями практической медицины - необходимостью изучить, разработать и установить оптимальные лечебные дозы высокочастотного ультразвука, применяемого контактным способом. Важное значение данной проблемы было обусловлено и тем, что с конца 40-х годов начали поступать сообщения о различных осложнениях, связанных с передозировкой высокочастотного ультразвука в лечебной практике. В настоящее время интенсивность применяемого терапевтического ультразвука на частотах от 800 кГц до 1^1,5 МГц значительно снижена: вместо 2^4 Вт/см2 наиболее часто применяется 0,2^0,4 Вт/см2. В случае диагностики параметры ультразвука при этом остаются еще высокими: частота может достигать от 800 кГц до 20 МГц, интенсивность варьировать между 0,01^0,1 Вт/см2 и 10^20 Вт/см2, а иногда и более.

Изучение биологического действия контактного высокочастотного ультразвука на различные системы целостного организма показало, что наиболее чувствительной к нему является центральная и периферическая нервная система: прежде всего, головной мозг-гипоталамус и ретикулярная формация ствола, кора больших полушарий, центральные и периферические вегетативные структуры и затем периферические нервы. Сердечно-сосудистая и дыхательная функции первично страдают в результате воздействия ультразвука на соответствующие гипоталамические и стволовые центры.

Экспериментальными исследованиями были показаны 3 характерные стадии биологического действия высокочастотного ультразвука на теплокровных. Интенсивное облучение мозга на частоте 400 КГц последовательно вызывало: 1) возбуждение, 2) торможение и 3) параличи дыхательного, а затем сердечно-сосудистого центров. На записях артериального давления и дыхания соответственно выступало: начальное возбуждение, последующее повышение давления до критических величин и паралич дыхания, как это наблюдается при шоке. Всю клиническую картину в целом находят весьма близкой к сотрясению мозга, что подтверждалось при гистологической обработке этих материалов. Указанные изменения мозга исследователи трактуют как травматические, вызванные механическим действием ультразвука, клиновидные же очаги некроза считают характерным распределением лучистой ультразвуковой энергией. Ультразвуковое воздействие разной интенсивности на различные области головы приводило к выраженным трофическим изменениям (похудение, незаживающие язвы, выпадение шерсти), глубокой астении, эндокринным расстройствам, обменным

нарушениям, к изменению состава периферической крови - лейкоцитозу либо лейкопении, изменению гемолитической стойкости эритроцитов и пр. Это связано с рефлекторным действием высокочастотного ультразвука на вегетативные центры головного мозга и, в первую очередь гипоталамической области.

Ультразвуковые колебания изменяют структуру клеточных мембран, увеличивают их проницаемость, стимулируют процессы гидролиза, гликолиза, активность биокатализаторов. Они повышают проницаемость кожи, повышают активность холинэстеразы почти в 2 раза. Доказано участие коры больших полушарий в функциональной перестройке деятельности организма, происходящей под влиянием ультразвукового облучения. Опыты показали, что под действием ультразвуковых колебаний разной интенсивности возникают направленные изменения биопотенциалов коры головного мозга, при этом слабое и однократное озвучивание сопровождается увеличением биопотенциалов коры, повторное либо интенсивное воздействие ультразвука приводит к снижению их, вплоть до полного биоэлектрического «молчания». Итак, в зависимости от интенсивности и длительности воздействия ультразвуки оказывают стимулирующее, активирующее влияние либо угнетают, тормозят и подавляют биологические процессы, физиологические реакции организма.

При озвучивании разных отделов спинного мозга и периферических нервных стволов отмечены те же закономерности, что и при озвучивании головного мозга. Патогенез ультразвуковых изменений можно объяснить механическими колебаниями - вибрационной микротравматизацией, приводящей к явлениям сотрясения спинного мозга.

В отношении периферических нервов установлены такие же закономерности воздействия ультразвука разной интенсивности: ультразвуки слабой и средней мощности повышают возбудимость и ускоряют проведение нервного импульса; с повышением интенсивности и продолжительности озвучивания нарастает угнетение возбудимости нерва до появления полного блока; па-тогистологически определяются набухание нервных волокон, их извитость, вакуолизация и распад.

Практика терапевтического применения высокочастотного ультразвука также выявила возможность неблагоприятного его воздействия на периферические отделы нервной системы. При лечебном действии высокочастотного ультразвука 1,5 Вт/см2 наблюдалась анал-гезия в зоне иннервации нерва ниже места озвучивания.

В ряде наблюдений приводятся данные заболевания периферических нервов активной руки у лиц, отпускающих лечебные процедуры. Отпуская сотням пациентам ультразвуковые процедуры, специалисты отмечают боли, парестезии и слабость правой кисти; после переключения на левую руку - аналогичные явления возникают и в левой кисти.

Большой интерес представляют функциональные и морфологические изменения в различных тканях и органах, возникающие, по заключению большинства авторов, от воздействия ультразвука на ЦНС. В этом плане существенную роль играют кожные анализаторы и особенно богато представленная на периферии вегетативная нервная система. Кожа является своеобразной антенной вегетативной нервной системы, пере-

дающей ультразвуковое раздражение на путь кожно-висцеральных рефлексов. Кроме того, ультразвуковое раздражение, падая на рецепторный аппарат кожи, передается по всем направлениям на периферические и центральные образования симпатической и парасимпатической нервной системы, на все уровни спинного и головного мозга как по специфическому, так и неспецифическому путям. На основании экспериментальных и клинических исследований многими авторами выявлены закономерные изменения сердечно-сосудистой деятельности.

Исследование сосудистых реакций организма на воздействие ультразвука позволило установить, что малые дозы высокочастотного ультразвука (0,2^1 Вт/см2) вызывают сосудорасширяющий эффект, большие дозы (3 Вт/см2 и более) - сосудосуживающий. Заметное влияние оказывает ультразвук и на тонус артерий крупного и среднего калибра. Достаточно широко известны изменения деятельности желудочно-кишечного тракта и других органов, развивающиеся под действием высокочастотного ультразвука. Исследователи связывают наблюдаемые ими изменения с воздействием ультразвука на гипоталамус, регулирующий деятельность внутренних органов рефлекторным и нейрогуморальным путем.

Ультразвуковые повреждающие изменения кохлеар-

ного аппарата и других тканей (костей) трактуются как неспецифические, вызванные действием вибрации.

Механизм действия ультразвуковык колебаний на организм объясняется не только непосредственным специфическим влиянием ультразвука на нервную систему, но и рефлекторным влиянием, осуществляемым путем сложнейших перекрестных рефлексов.

Приведенные сведения о действии высокочастотного ультразвука на организм животных и человека свидетельствуют о полиморфных и сложных изменениях, происходящих почти во всех тканях, органах и системах организма соответственно степени их резистентности к ультразвуку. Изменения происходят на клеточном, молекулярном и субмикроскопическом уровнях тканей, выгзытая «перестройку» физиологических реакций, ней-рогуморальных, обменных процессов, эндокринной функции и деятельности различных систем и органов, подчиняясь общей закономерности: малые интенсивности стимулируют, активируют, средние и большие угнетают, тормозят и могут полностью подавлять функции.

Таким образом, этот материал, изложенный с позиции воздействия ультразвука на биологические системы, поможет медикам ориентироваться в выборе параметров ультразвука при использовании этого лечебного фактора.

THE INFLUENCE OF ULTRASOUND ON THE ORGANISM

E.V. Shevchenko, N.A. Kchlopenko (Irkutsk State Medical University)

Its shown that main ultrasound charaecteristics (intensity, exposition duration, rate) establish the peculiarities of its spreading in medium and biotissues. A number of effects (mechanical, thermal and physical-chemical) occurs when the biotissues ifluenced by ultrasound. These effects result in some deviations from physical laws (principles) the nature of which is to be taken into the consideration when diagnostic and medical (theraupeutic) measures are performed.

ЛИТЕРАТУРА

1. Мшш/юв И.Г. Ультразвук и его применение. - Л., 1968.

2. Ультразвук и термодинамические свойства. - Курск,

3. Мрименение82льтразвука к исследованию вещества. -

4. БоголЮбов ВА, Пономаренко В.Н. Общая физиотерапия. - М., 1998. - С.239-259.

5. Боголюбов В.А. Техника и методики физиотерапевтических процедур. - М.: Медицина, "2002. - С.246-272.

6. Руденко Т.Л. Физиотерапия. - Ростов-на-Дону: Феникс, 2000. - С.214-228.

7. ММЬлчанов Г.И. Ультразвук в фармации. - М., 1980. -

8. Царцис П.Г., Френкель И.Д. Биохимические основы физической терапии или общая физиотерапия. - М., 1987. - 453 с.

© БАРДЕДИНОВ Х.К. - 2006

ЛЕКЦИИ ПО ФОРМАЛЬНОЙ ЛОГИКЕ: ВВЕДЕНИЕ В УЧЕНИЕ О

ПОНЯТИИ (лекция 2)

Х.К. Бардединов

(Иркутский институт повышения квалификации работников образования, ректор - д. ист. н., проф. Л.М. Дамешек, кафедра коррекционно-развивающего обучения, и.о. зав. - Х.К. Бардединов)

Резюме. Известно, что в процессе подготовки специалиста (врача, юриста, психолога, педагога, журналиста и т.д.) не только накапливаются нужные знания, но формируется так называемое «профессиональное» мышление. Это своеобразная мыслительная деятельность специалиста, предполагающая особые формы и взаимосвязи анализа, синтеза, обобщения, которые связаны с необходимостью соотношения общего (общая картина болезни, картина поведения, преступления, успеваемости и др.) с отдельными составляющими (факторы влияющие на поведение, успеваемость, симптомы болезни и др.). Профессиональное мышление также предполагает быстрое и своевременное принятие единственно правильного решения. Значительную составляющую в таком мышлении, кроме интуитивного и творческого, представляет аналитическое (логическое) мышление, которое позволяет специалисту создавать картину ситуации в виде четких мыслей - в виде понятий, суждений, умозаключений. Ключеше слова. Мышление, логика, понятие, содержание, специалист.

Логическая теория - своеобразна. Она выгсказыта-ет об обычном человеческом мышлении то, что покажется Вам на первыш взгляд необыиным и без необхо-

димости усложненным. Основное содержание логики формулируется зачастую на особом, созданном специально для формализации мысли искусственном языке.

Ультразвуковые отпугиватели в последнее время получили широкое практическое применение. Их очень часто используют для борьбы с различными грызунами, насекомыми, бродячими животными. Оказывается, что ульразвуковая волна может вызвать дискомфорт, болезненные ощущения, панику и страх.

Ультразвуковые отпугиватели грызунов

Но в то же время естественным является вопрос о том, не вреден ли ультразвуковой отпугиватель грызунов для человека. Рассмотрим, что собой представляет ультразвук и как он воздействует на организм человека и животного. Это позволит принять для себя правильное решение пользоваться или нет УЗ-отпугивателями у себя дома.

Чтобы разобраться опасен ли ультразвуковой отпугиватель для людей, рассмотрим, что такое УЗ-волна. Ультразвук относится к категории звуковых волн, которые представляют собой колебания молекул среды, в которой они распространяются. Посредством этих волн и передается звуковая информация к слуховым органам.

Особенностью ультразвуковых волн, является их высокая частота и небольшая длина волны. Вследствие этого они отличаются высокой проникающей способностью.

Интервал частот, который занимают УЗ-волны, составляет от 20 до 70 кГц. Этот диапазон является «неслышимым для человека» поскольку его ухо может воспринимать звуковые волны в интервале значений от 10 Гц до 16 кГц.

В каких областях еще применяют УЗ

Кроме ультразвуковых отпугивателей, ультразвук имеет широкое практическое применение в разных отраслях деятельности человека.

Среди основных из них следует выделить следующие:

  • диагностические процедуры в медицине;
  • эхолокация;
  • использование для дефектоскопии;
  • реализации терапевтических методик при лечении;
  • использование в производственных процессах;
  • применение для приготовления различных смесей;
  • использование для ультразвуковой сварки;
  • применение в гальванотехнике;
  • для проведения различных научных исследований.

Чтобы сделать заключение вредны ли УЗ-отпугиватели для человека рассмотрим воздействие ультразвука на здоровье человека и животных. Как было описано выше, человек не может слышать ультразвуковые волны, поскольку его слуховой аппарат рассчитан совершенно на другой диапазон – 10 Гц…16 кГц. Вследствие этого какую-либо раздражительность или дискомфорт человек не почувствует, когда будет находиться возле работающего отпугивателя.

Характеризуя звуковые волны важно помнить не только о частоте, но и о давлении, которое создает звук. Современные ультразвуковые отпугиватели генерируют ультразвуковые волны, давление которых находится в пределах 72…100 дБ.

Этот уровень давления безопасен для человека, слуховой аппарат которого нормально воспринимает волны со звуковым давлением до 100 дБ. При большом значении давления, возможно возникновение болезненных симптомов. Поэтому ультразвуковой отпугиватель мышей влияние на человека не будет иметь.

А вот с грызунами и некоторыми животными дела обстоят совсем иначе. Их слуховой аппарат как раз способен воспринимать ультразвуковые волны. Поэтому они могут казаться для них шумовым раздражителем.

Но, это только пол беды – оказывается, что звуковое давление, которое не причиняет вреда человеку пагубно воздействует на грызунов. Их слуховой аппарат настолько чувствителен, что УЗ-волна с давлением 70 дБ и более приведет к болезненным ощущениям у грызунов.

Вследствие такого воздействия грызуны будут ощущать боль, страх, дискомфорт и тревогу при попадании в область воздействия прибора. Эти факторы и приводят к тому, что грызуны стараются как можно быстрее покинуть занятые территории.

Что касается домашних животных, то ультразвук на них, как и на людей не воздействует. Исключением являются только те животные, которые относятся к ряду грызунов – морские свинки, хомяки, ручные крысы и пр. Правда, это не означает, что в помещениях, где находятся домашние питомцы можно установить любой отпугиватель.

Есть такие модели, которые используют в процессе своей работы не только УЗ-волны, а и обычные звуковые волны. Такого рода устройства будут вызывать дискомфорт как у домашних питомцев, так и у человека. Поэтому пользоваться ультразвуковыми устройствами можно только в строгом соответствии с инструкциями и рекомендациями завода-производителя.

Заключение

Изучив, как действует ультразвуковой отпугиватель на человеческий организм и на грызунов, можно сделать выводы, что эти устройства в полной мере безопасны и не могут принести вреда здоровью. Чтобы это было именно так, важно правильно подобрать отпугиватель.

На сегодня существуют модели, которые могут применяться в жилых помещениях, а есть устройства, которые рассчитаны на объекты, где людей нет. Поэтому выбор отпугивателя является важным моментом того, что он не навредит человеку.

Необычное ощущение, которое воспринимается нашим ухом как звук, является действием различного рода колебаний, так называемой плотной среды, в частности воздуха, на слуховой аппарат.

Но не все колебания которые, протекают в среде, вызывают ощущение звука. Наиболее низкие границы, с частотой колебаний которых слуховой аппарат способен распознать звук, является 20 герц.

Самый высокий порог составляет около 16 или 20 тысяч герц. Определение этих границ зависит от индивидуальных изменений.

Ультразвук при воздействии на человеческий организм , способен трансформироваться в тепловую энергию, что вызывает ощущение теплоты при его воздействии. Он вызывает так называемый микро массаж тканей (её сжатие и растяжение), которое благоприятно влияет на кровообращение, что в последствии, улучшает тканевые функции.

При его воздействии улучшаются обменные процессы организма , а также ультразвук оказывает некоторое нервно-рефлекторные воздействие .

Изменения после воздействия ультразвука, отмечаются не только в том месте, где конкретно был применен ультразвук, но и в других отделах организма. При его длительном воздействии , ультразвук способен привести к некоторому разрушению тканей.

Эксперты считают , что его разрушающее действие, связано с так называемым эффектом кавитации. Этот эффект приводит к образованию полостей в жидкости, что приводит к гибели клеток.

Такие полости были определены на экспериментах, поставленных на животных. Результаты показывают, что квитанционные пузырьки образовывались в межклеточном пространстве.

Ультразвук способен убить многие виды микроорганизмов . Способен инактивировать некоторые виды вирусов. Негативно влияет на структуру белков, нарушая ее и в конечном итоге разрушая её полностью. При воздействии ультразвука на молоко, разрушающее его свойство, полностью уничтожает содержание в нем витамина C.

В медицине используется ультразвук в озвучении крови, что приводит к повышению её свойств свертывания. Можно сказать, что ультразвук душит клетки организма. Из-за него клетка не может нормально дышать и производить свои обменные процессы.

Опыты над животными показывают , что интенсивное воздействие ультразвука приводит к сильным болям, облысению, некоторые ожоги, помутняется роговица глаза и хрусталика, серьезные нарушения биохимического характера, гемолиз, а воздействии высоких частот, наступает смерть в следствии мелких кровоизлияний в различных органах организма

Экспериментальные данные показывают, что ультразвук может серьезно повлиять на восприимчивость слухового аппарата . Эксперты полагают, что большой процент населения Соединенных Штатов, имеющие нарушение слуха, связано с воздействием звуковых установок имеющее большое распространение на территории страны.

Лица, которые долго были подвержены воздействию ультразвука, ощущают некоторую сонливость и утомленность.

Противопоказано озвучивать растущий организм, половые органы, сердце. Это может вызвать крайне негативные последствия, связанные с нарушением сердечнососудистой деятельностью. Применение ультразвука также противопоказано при некоторых заболеваниях, а также при беременности.

В связи с возрастанием использования ультразвука, некоторые люди по неволе подвержены его воздействию. Для предотвращения негативных изменений в организме, следует проходить обследования и при наличии воздействия ультразвука, совершать профилактику для нейтрализации дальнейших изменений

Ультразвуки (неслышимые звуки) представляют собой механические колебания упругой среды и отличаются от звуковых волн более высокой частотой, превышающей верхний порог слышимости (20 000 Гц); диапазон ультразвуковых колебаний чрезвычайно широк - от 2·104 до 109 Гц (табл. 32).

Ультразвуковые волны распространяются в любой упругой среде (жидкой, твердой, газообразной), лучше в металлах, воде, хуже в воздухе.

Зависимость между длиной волны (λ), частотой (f) и скоростью (с) выражается формулой:
λ=c/f
При попадании на границу двух различных сред часть энергии проходит в другую среду, часть отражается. Чем больше акустическое сопротивление сред (произведение плотности среды на скорость распространения в ней ультразвука), тем меньше переход ультразвуков из одной среды в другую. Например, почти 10% ультразвуковой энергии переходят из железа в воду и только 0,1% поступает из железа в воздух. Наибольшее отражение ультразвуковых колебаний наблюдается на границе вода - воздух; хорошо ультразвук проходит из воды в биологические ткани. При прохождении в различных средах ультразвуковые волны в разной степени поглощаются ими, чем обусловлено избирательное действие. Например, абсорбционные свойства мышечной ткани выше жировой; в сером веществе мозга поглощение почти в 2 раза выше, чем в белом; наибольшее поглощение наблюдается в костной ткани, наименьшее - в спинномозговой жидкости.

Поглощение ультразвука сопровождается нагреванием среды. Термический эффект усиливается с повышением частоты колебаний. Помимо теплового действия, ультразвук вызывает в средах ряд других явлений. Например, прохождение ультразвука в жидкости сопровождается эффектом кавитации. При распространении упругих волн в жидкости возникают последовательно фазы сжатия и разрежения, в отдельных участках образуются разрывы или полости, которые заполняются парами жидкости и растворенными в ней газами. При этом в образовавшемся пузырьке создается большое давление, которое может достигать нескольких атмосфер. Последующее сжатие приводит к захлопыванию пузырька, что сопровождается гидравлическим ударом, обладающим большой разрушительной силой. Этим обусловлено механическое действие ультразвука. Образование кавитационных полостей сопровождается распространением на пограничных поверхностях электрических зарядов, вызывающих люминесцентное свечение, ионизацию молекул воды. С этими явлениями связан ряд химических эффектов: окисляющее действие ультразвука, ускорение химических реакций, разрушение органических соединений.

Впервые ультразвуки были применены французом Ланжевеном и русским инженером Н. К. Шиловским в 1916 г., в целях гидролокации. Начало промышленному применению ультразвуков было положено советским ученым С. Я. Соколовым, который в 1927 г. разработал первый в мире ультразвуковой дефектоскоп. В настоящее время ультразвуки применяются в машиностроении, металлургии, радиотехнической, химической, фармацевтической, легкой и других отраслях промышленности.

В технике ультразвук используется в целях интенсификации технологических процессов - при очистке и обезжиривании деталей, механической обработке твердых и хрупких материалов (сверлении, резании), при сварке, пайке, лужении; для ускорения химических реакций в гальванотехнике, при получении эмульсий; мойке стеклотары, для анализа и контроля (дефектоскопия, определение вязкости, плотности, температуры исследуемых материалов и т. п.).

В качестве источников ультразвука применяются акустические преобразователи: пьезоэлектрические, магнитострикционные, аэродинамические, гидродинамические (свистки, сирены), электродинамические. Наиболее распространены в промышленности пьезоэлектрические и магнитострикционные преобразователи. Пьезоэлектрические преобразователи используются преимущественно в контрольно-измерительных приборах, дефектоскопах. Для этих целей чаще применяются ультразвуки высокой частоты (порядка нескольких мегагерц), но небольшой мощности (100-300 вт). Более широко распространены в промышленности магнитострикционные преобразователи. Они применяются для генерирования ультразвука при интенсификации технологических процессов. В технологических целях используются низкочастотные ультразвуки 24 000-30 000 Гц. Мощность применяемых преобразователей в зависимости от технологического процесса различна и колеблется от 100 вт до 5-10 кет. Именно эта область применения ультразвука должна в первую очередь привлекать внимание врача.

Основными элементами ультразвукового оборудования являются генератор и акустический преобразователь. Под действием переменного электрического тока, подаваемого с генератора, в преобразователе возбуждаются Механические колебания.

При процессах, протекающих в жидкости (очистка и обезжиривание деталей, электрические процессы в гальванотехнике), пластинчатый преобразователь встроен в дно ванны. От излучающей поверхности ere колебания передаются жидкости, в которую погружаются обрабатываемые детали. Процессы, связанные с возбуждением ультразвука в твердых средах (сверление, сварка, резание и др.), осуществляются на станках, машинах и агрегатах. Встроенные в них стержневые преобразователи скреплены с инструментом (сверлом, резцом), через который ультразвуковые колебания воздействуют на обрабатываемую деталь.

Работа ультразвукового оборудования независимо от того, протекает ли процесс в жидкой или твердой среде, сопровождается распространением ультразвуковых колебаний в окружающей среде. Источником ультразвука является открытая поверхность преобразователя. При процессах, осуществляющихся в жидкости, ультразвуки поступают в воздух также с ее поверхности. Но изолированно ультразвуковые колебания в производственных условиях почти не встречаются. Генерирование ультразвуковых колебаний сопровождается слышимым шумом, который обусловлен кавитацией, колебаниями обрабатываемых деталей и металлических конструкций оборудования.

Воздействие звуковых и ультразвуковых колебаний на организм работающих происходит через воздух и вследствие непосредственного контакта рук работающего со средами, в которых возбуждены колебания (контактный путь воздействия).

В производственных помещениях суммарные уровни звукового и ультразвукового давления при разных технологических процессах колеблются от 90 до 130 дБ. Спектр колебаний, создаваемых ультразвуковым оборудованием в воздухе, характеризуется необычайной широтой. Он охватывает весь слышимый диапазон частот и продолжается в ультразвуковой области. При рабочей частоте оборудования 20 000 Гц в спектре наблюдаются ультразвуки с частотой до 100 000 Гц. Однако наиболее высокие уровни приходятся на область высоких звуковых и низких ультразвуковых частот, т. е. от 8000-10000 до 31000 Гц с максимумом на рабочей частоте. Своеобразный комплекс высокочастотных звуковых и низкочастотных ультразвуковых колебаний является особенностью условий труда. В случае применения ультразвуковых колебаний в жидкости повышение спектральных уровней может наблюдаться с 4000-6000 Гц. Увеличение рабочей частоты соответственно вызывает изменения спектрального состава: основная масса энергии размещается в области рабочей и близлежащих в ней частот (рис. 35).

Рис. 35. Спектр колебаний, создаваемых ультразвуковыми ваннами для очистки деталей.

1 - при рабочей частоте 20 кГц; 2 - при рабочей частоте 40 кГц.


Контактное воздействие ультразвука носит локальный, как правило, периодический и кратковременный характер. Воздействию подвергаются руки рабочего, чаще в период загрузки и выгрузки деталей при обслуживании ультразвуковых ванн, при удерживании детали руками во время обработки, при пайке и лужении, а иногда при сварке и очистке. Иногда такой контакт является следствием несоблюдения мер предосторожности работающими. Если учесть, что в средах, с которыми соприкасаются рабочие, интенсивность довольно высокая, даже кратковременный контакт является крайне нежелательным.

Из методов ультразвукового анализа и контроля наиболее широкое применение имеет дефектоскопия. При дефектоскопии, как правило, используются ультразвуки высокой частоты порядка сотен килогерц и нескольких мегагерц. При этом основное внимание следует уделить предотвращению контактного воздействия, особенно в период монтажа, наладки и испытания дефектоскопов. Исследования состояния здоровья работающих с дефектоскопами, по данным зарубежных авторов, не выявили заметных признаков воздействия ультразвука.

При работе сирен, свистков, электродинамических излучателей Синклера в воздухе могут создаваться ультразвуковые поля интенсивностью 140-160 дБ. Эти виды оборудования используются для экспериментальных работ, а в производственных условиях почти не встречаются.

Наиболее изучено биологическое действие ультразвука при контактном его воздействии. В эксперименте установлено, что ультразвуковые колебания, глубоко проникая в организм, могут вызвать серьезные локальные нарушения в тканях: воспалительную реакцию, геморрагии, а при высокой интенсивности - некроз.

В производственных условиях вследствие кратковременного воздействия ультразвука описанные выше контактные грубые нарушения не наблюдаются. При систематическом же контакте с источником ультразвука в жидкости (у медицинских работников) выявлены профессиональные заболевания - парезы кистей и предплечий. Имеются экспериментальные данные о действии ультразвука, распространяющегося в воздухе. Низкочастотные ультразвуки высокой интенсивности (160- 165 дБ), в течение нескольких минут вызывают гибель животных от паралича дыхательного центра при явлениях ожога кожи, гипертермии, паралича конечностей.

Результаты клинических наблюдений за состоянием здоровья работающих получены в условиях одновременного действия шума и ультразвука. Лица, обслуживающие ультразвуковое оборудование, предъявляют многообразные жалобы, главным образом на головную боль, головокружение, быструю утомляемость, расстройство сна, сонливость днем, раздражительность, повышение чувствительности к звукам. К концу смены может наблюдаться повышение температуры тела, урежение пульса, замедление рефлекторных реакций на внешние раздражения. При клиническом обследовании отмечается астенический синдром.

Исследования высшей нервной деятельности указывают на снижение активности торможения, силы раздражительного процесса и инертности его. У лиц, длительное время занятых экспериментальной работой на ультразвуковых установках, иногда наблюдаются диэнцефальные нарушения (потеря в весе, резкий подъем содержания сахара в крови с медленным падением до исходного уровня, гипертиреоз, повышение механической возбудимости мышц, зуд, пароксизмальные приступы типа висцеральных кризов). Нередки нарушения функции периферического отдела нервной системы, онемение, снижение всех видов чувствительности по типу коротких и длинных перчаток, гипергидроз. Наблюдаются также снижение слуха и своеобразные расстройства со стороны вестибулярного аппарата - отсутствие нистагма в одну или обе стороны при вестибулярных пробах, диссоциация между нистагменной и другими рефлекторными реакциями, диссоциация между вращательной: и калорической пробой. Изменения являются следствием комбинированного действия шума и ультразвука. Периферические нарушения обусловлены преимущественно контактным воздействием ультразвуковых колебаний. Мероприятия должны быть направлены на ограничение воздействия звуковых и ультразвуковых колебаний, передающихся по воздуху и контактным способом.

Основной мерой снижения шума и ультразвука является понижение их интенсивности в источнике, но этот путь не всегда технически возможен. На промышленных предприятиях нередко применяется завышенная интенсивность ультразвуковых колебаний, поэтому в первую очередь следует уделять внимание рациональному подбору мощности оборудования. В тех случаях, когда снижение интенсивности противоречит интересам технологии, наиболее эффективной мерой снижения шума и ультразвука является звукоизоляция оборудования.

В нашей стране уже имеется опыт применения звукоизолирующих устройств. Ванны в звукоизоляционном исполнении выпускаются серийно. Звукоизоляция обеспечивается кожухом из листовой стали о герметично закрывающейся крышкой. Внутренние стенки кожуха выстланы слоем пористой резины. Суммарный уровень звукового и ультразвукового давления снижается при этом на 25-30 дБ.

Следует иметь в виду, что в момент загрузки и выгрузки деталей звукоизоляция нарушается. Поэтому целесообразно предусматривать автоматическое выключение колебаний при открывании крышки кожуха. Желательно также применение звукоизолирующих устройств для мощных станков и сварочных машин.

Применение звукоизолирующего кожуха на станках позволяет снизить уровень звукового и ультразвукового давления на 30-40 дБ. Так как кожух полностью укрывает рабочую поверхность, то применение его создает неудобства при кратковременной обработке, требующей частой смены обрабатываемых деталей, но может с успехом применяться при длительном процессе.

Профилактика контактного воздействия ультразвука достигается путем выключения колебаний в период загрузки и выгрузки деталей, для чего рекомендуется применение автоблокировки.

В значительной мере можно ослабить интенсивность контактного воздействия применением специальных приспособлений для загрузки деталей (сеток, сосудов из оргстекла и др. с ручками, имеющими эластичное покрытие). При необходимости периодического кратковременного контакта рекомендуется применение зажимов, щипцов, ношение резиновых и хлопчатобумажных перчаток. На стенках и сварочных машинах должны быть предусмотрены специальные приспособления для закрепления деталей во время обработки.

Методическими указаниями для промышленно-санитарных врачей и медико-санитарных частей по профилактике вредного влияния ультразвука при применении его в промышленности № 424-63 (утверждены 31 января 1963 г. Министерством здравоохранения СССР) предусматривается систематический контроль за состоянием здоровья рабочих путем проведения предварительных осмотров в случае приема на работу и периодических медицинских осмотров работающих один раз в год.

ВЛИЯНИЕ УЛЬТРАЗВУКА НА ОРГАНИЗМ ЧЕЛОВЕКА

В настоящее время ультразвук широко применяется в различных областях техники и промыш-ленности, в особенности для анализа и контроля: дефектоскопия, структурный анализ вещества, определение физико-химических свойств материалов и др.

Технологические процессы: очистка и обезжиривание де-талей, механическая обработка твердых и хрупких материалов, сварка, пайка, лужение, электролитические процессы, ускорение химических реакций и др. используют ультразвуковые колебания низкой частоты (НЧ) - от 18 до 30 кГц и высокой мощности - до 6-7 Вт/см 2 . Наиболее распространенными источниками ультразвука являются пьезо-электрические и магнитные преобразователи. Кроме того, в производственных условиях НЧ ультразвук нередко образуется при аэродинамических процессах: работа реактивных двигателей, газовых турбин, мощных пневмодвигателей и др.

Значительное распространение ультразвук получил в медицине для лечения заболеваний позвоночника, суставов, периферической нервной системы, а также для выполнения хирургических операций и диагностики заболеваний. Американскими учеными был разработан эффективный метод удаления опухолей головного мозга(2002 г), не поддающихся обычному хирургическому лечению. В его основе принцип, использующийся при удалении катаракты - дробление патологического образования фокусированным ультразвуком. Впервые разработан аппарат, способный создать в заданной точке ультразвуковые колебания необходимой интенсивности и при этом не повредить окружающие ткани. Источники ультразвука располагаются на черепе пациента и испускают относительно слабые колебания. Компьютер рассчитывает направление и интенсивность ультразвуковых импульсов таким образом, чтобы они только в опухоли сливались друг с другом и разрушали ткани.

Кроме того, врачи научились с помощью ультразвука выращивать утерянные зубы заново (2006 г). Как обнаружили исследователи из канадского университета Альберты, пульсирующий ультразвук низкой интенсивности стимулирует повторный рост выбитых и выпавших зубов. Медики разработали особую технологию - миниатюрную “систему на чипе”, обеспечивающую заживление зубной ткани. Благодаря беспроводному выполнению преобразователя ультразвука, микроскопическое устройство, укомплектованное биологически совместимыми материалами, помещается во рту пациента, не доставляя ему дискомфорта.

Интенсивно используется в течение трех десятилетий диагностический ультразвук во время беременности и при заболеваниях отдельных органов. Ультразвук, натыкаясь на препятствие в виде органов человека или плода, определяет их наличие и размеры.

Британские исследователи из Лестерского университета применили ультразвуковые технологии в автоматизированной установке, которая снимает мерки с клиента для пошива одежды по индивидуальному заказу. В установке источник ультразвука и шестьдесят сенсоров регистрируют сигналы, отраженные поверхностью тела.

Для этих целей в технике используются звуковые колебания высокой частоты (ВЧ) - от 500 кГц до 5 МГц и малой мощности - от 0,1 до 2,0 Вт/см 2 . Интенсивность применяемого терапевтического ультразвука чаще всего не превышает 0,2-0,4 Вт/см 2 ; частота колебаний ультразвука, при-меняемая для диагностики, колеблется от 800 кГц до 20 МГц, интенсивность варьирует от 0,01 до 20 Вт/см 2 и более.

Это только некоторые области применения ультразвука. Человек во всех случаях подвергается его воздействию. Как влияет ультразвук на организм человека? Вредно ли это?

Ультразвук - это механические колебания упругой среды, распространяющиеся в ней в виде переменных сжатий и разрежений; с частотой выше 16-20 кГц, не воспринимаемые человеческим ухом.

С увеличением частоты ультразвуковых колебаний увеличивается их по-глощение средой и уменьшается глубина проникновения в ткани человека. По-глощение ультразвука сопровождается нагреванием среды. Прохождение ультразвука в жидкости сопровождается эффектом кави-тации. Режим генерации ультразвука может быть непрерывным и импульсным.

Кроме общего воздействия на организм работающих через воздух, НЧ ультразвук оказывает локальное действие при соприкосновении с обрабатываемыми деталями и средами, в которых возбуждены ультразвуковые вибрации. В зоне наибольшего воздействия ультразвука в зависимости от вида оборудования находятся кисти рук. Локальное действие может быть по-стоянным (удержание инструмента при обрабатываемой детали при лужении, пайке) или временным (погрузка деталей в ванны, сварка и т. п).

Воздействие от мощных установок (6-7 Вт/см 2) опасно, т. к. может приводить к поражению периферического нерв-ного и сосудистого аппарата в местах контакта (вегетативные полиневриты, нарезы пальцев, кистей и предплечья). Контактное воздействие ультразвука чаще всего имеет место в момент загрузки и выгрузки деталей из ультразву-ковых ванн. Трехминутное погружение пальцев в воду ванны с мощностью преобразо-вателя 1,5 кВт вызывает ощущение покалывания, иногда зуда, а спустя 5 мин. после прекращения действия ультразвука отмечается ощущение холода, чувство онемения пальцев. Вибрационная чувствительность резко снижается, болевая чувствительность у разных лиц при этом может быть либо повышен-ной, либо пониженной. Кратковременный систематический контакт с озвучен-ной средой длительностью 20-30 с и более на подобных установках уже мо-жет приводить к развитию явлений вегетативного полиневрита.

Последствия воздействия ультразвука на организм: функциональные изменения со стороны центральной и перифери-ческой нервной системы, сердечно-сосудистой системы, слухового и вестибу-лярного анализатора, эндокринные и гуморальные отклонения от нормы; головные боли с преимуществен-ной локализацией в фронто-назальной орбитальной и височной областях, чрез-мерно повышеннаяю утомляемость; чувство давления в ушах, неуверенность походки, головокружение; нарушение сна (сонливость днем); раздражительность, гиперакузия, гиперосмия, боязнь яркого света, повышение порогов возбуди-мости болевого; в условиях воздей-ствия интенсивного ультразвука, сопровождаемого шумом, - не-достаточность сосудистого тонуса (понижение артериального давления, гипо-тония), растормаживание кожно-сосудистых рефлексов в сочетании с яркой вазомоторной реакцией; общецеребральные нарушения; вегетативный полиневрит рук (реже и ног) разной степени (пастозность, акроцианоз пальцев, термоасимметрия, расстрой-ство чувствительности по типу перчаток или носков); по-вышение температуры тела и кожи, снижение уровня сахара в крови, эозинофилия. Степень выраженности патологиче-ских изменений зависит от интенсивности и длительности действия ультра-звука; контакт с озвучиваемой средой и наличие шума в спектре также ухуд-шают состояние здоровья.

По сравнению с ВЧ шумом ультразвук заметно слабее влия-ет на слуховую функцию, но вызывает более выраженные отклонения от нормы со стороны вестибулярной функции, болевой чувствительности и терморегуля-ции. Интенсивный ВЧ ультразвук при контакте с поверхностью тела вызывает в основном те же нарушения, что и НЧ.

Особое внимание следует уделить диагностическому ультразвуку. В обзоре Крускал “Диагностическая визуализация во время беременности” (2000 г) отмечается, что ультразвуковые волны имеют потенциал повреждающего воздействия на биологические ткани за счет нагревания и кавитации. Однако документированного подтверждения биологических эффектов ультразвука пока нет. Канадское общество акушеров и гинекологов в 1999 году в своем заявлении отметило, что не существует научных доказательств повреждающего воздействия диагностического ультразвука на развивающийся плод. Ранее предполагалось, что воздействие ультразвука может быть ассоциировано с низкой массой плода при рождении, дислексией, повышенной частотой лейкемии, солидными опухолями, задержкой обучаемости чтению и письму. Риск ультразвукового исследования состоит в основном в возможной гипердиагностике или вероятности пропущенной патологии.

Допустимые уровни звукового давления ультразвуковых установок сле-дует принимать согласно “Санитарным нормам и правилам при работе на про-мышленных ультразвуковых установках” за № 1733-77, ГОСТ 12. 1. 001-89, СанПиН 2. 2. 2/2. 1. 8. 582, которые даны для 1/3 октавных полос в диапазонечастот 1,25-100 кГц и составляют 80 - 110 дБ. При контактном действии уровень ультразвука не должен превышать 110 дБ. ГОСТом предусмотрены изменения ПДУ ультразвука при суммарном сокращении времени его воздействия (на 6 дБ при вре-мени воздействия 1. . . 4 часа в смену и 24 дБ при времени воздей-ствия 1. . . 5 мин).

В основе предупреждения вредного действия ультразвука лежат меры технологического характера: создание автоматического ультразвукового обо-рудования (для мойки тары, очистки деталей), установок с дистанци-онным управлением; переход на использование маломощного оборудования. В этом случае интенсивность ультразвука и шума уменьшается на 20-40 дБ (например, при ультразвуковой очистке деталей, пайке, сверле-нии и др).

При проектировании ультразвуковых установок целесообразно выбирать рабочие частоты, по воз-можности больше удаленные от слышимого диапазона частот (не ниже 22 кГц), чтобы избежать действия выраженного ВЧ шума.

Ультразвуковые установки с превышающими нормативы уровнямишума и ультра-звука следует оборудовать звукоизолирующими устройствами (кожухами, экранами) из листовой стали или дюраля, покрытого звукопоглощающими материалами (рубероидом, технической резиной, пластмассой, антивибритом, гетинаксом, противошумной мастикой). Звукоизолирующие укрытия ультразвуковых установок должны быть изолированы от пола резиновыми прокладками и не иметь щелей и отверстий.

Установки, генерирующие ко-лебания с общим уровнем 135 дБ, размещают в кабинах со звукоизо-ляцией. Для исключения воздействие ультразвука при контакте с жидкими и твердыми средами, необходимо выключение ультразвуковых преобразователей; применение специального рабочего инструмента с виброизолирующей рукояткой и защита рук резиновыми перчатками с хлопчатобумажной подкладкой. При повышенном уровне виброскорости в диапазоне частот от 8 до 2000 Гц на поверхно-стях ультразвуковых инструментов (паяльники, сварочные пистолеты и др) и приспособлений для фиксации деталей необходимо прибегать к демпфирующим покрытиям.

Уста-новки размещаются в изолированных помещениях; отделяются перегородками на всю высоту помещения; ограждаются в виде кабин, бок-сов, выгородок с целью снижения шума и ультразвука на рабочих местах до допустимых величин. ; работающим следует использовать средства индивидуальной защиты.

При применении ВЧ ультразвука мероприятия должны направлены на защиту рук работающих. При работе в жидкой среде в усло-виях лаборатории или при проведении подводного массажа в физиотерапевти-ческих кабинетах контакт с жидкостью должен быть полностью исключен. При дефектоскопии работающие должны избегать прикосновения рук с пьезоэлементом дефектоскопического оборудования.

Предприятие-изготовитель должно указывать в эксплуатационной доку-ментации производственного оборудования ультразвуковую характеристику - уровни звукового давления в третьоктавных полосах принятого диапазона ча-стот, измеряемые в контрольных точках вокруг оборудования; режим работы, при котором должно про-водиться определение характеристик ультразвука. Работающие с ультразвуковым оборудованием проходят инструктаж о характере действия ультразвука; мерах защиты; условиях безопасного обслуживания ультразвуковых установок.

Противопоказания к приему на работу: хронические заболевания центральной и периферической нервной систе-мы, невриты, полиневриты; неврозы общие и сосудистые; перенесенные травмы черепа (сотрясение мозга); обменные и эндокринные нарушения; лабиринтопатия и хронические заболевания органа слуха; стойкое снижение слуха любой этиологии; гипотоническая и гипертоническая болезнь. Периодические медосмотры следует проводить 1 раз в год с участием не-вропатолога, терапевта, отоларинголога; важно исследование вестибулярного аппарата.

Таким образом, ультразвук, с одной стороны, широко используется во многих областях экономики, с другой стороны, пока ещё недостаточно изучено его влияние на организм человека при терапевтическом применении. Пациенты клиник, проходящие диагностику заболеваний с помощью ультразвука, мало информированы о возможном вреде здоровью. Следует вести хотя бы просветительскую работу в этом направлении.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии