Прогноз землетрясений и профилактические мероприятия. Прогнозирование землетрясений Нельзя определить при прогнозировании землетрясения

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Современная наука прогнозирует ураганы, наводнения, извержения вулканов и другие стихийные бедствия, помогая избежать жертв и сократить экономический ущерб. И только землетрясения наносят удар совершенно непредсказуемо, убивая людей там, где они чувствуют себя наиболее защищенными, — в собственных домах. Безрезультатность усилий в сфере прогноза землетрясений привела многих геофизиков к убеждению, что эта задача принципиально неразрешима или, по крайней мере, далеко выходит за рамки возможностей современной науки: сколько-нибудь надежные краткосрочные прогнозы (в отличие от долгосрочных) сделать не удается. И все же попытки проникнуть в тайну сотрясений земной коры продолжаются. Фото ILLSTEIN BILD/VOSTOCK PHOTO

Первые примеры успешного прогноза землетрясений относятся к 1970-м годам, и тогда казалось, что финальный успех уже не за горами - надо только собрать побольше разносторонней информации о состоянии земной коры и научиться получше ее обрабатывать. Успех в решении этой задачи принес бы не только огромную практическую пользу, но и пропагандистский эффект, игравший большую роль в эпоху холодной войны. Наиболее активно проблемой занимались в США , Японии , СССР и Китае . Американцы и японцы делали ставку на крупномасштабные сети сбора геофизической информации, Советский Союз - на совершенствование обработки данных по районам высокой сейсмичности, а Китай, как уже не раз в своей истории, - на многочисленное, трудолюбивое и исполнительное население.

В тот период в КНР была создана целая армия народных наблюдателей, которые должны были сообщать в научные центры о неожиданных изменениях уровня воды в колодцах, аномалиях в поведении животных и других приметах надвигающегося землетрясения. В нескольких наиболее сейсмоопасных районах были организованы сети инструментальных наблюдений. Результаты не заставили себя долго ждать. В 1975 году китайским специалистам удалось предсказать сильное Хайченгское землетрясение с магнитудой 7,3. В течение нескольких месяцев наблюдения фиксировали аномально быстрые движения земной поверхности. Потом все чаще стали поступать сигналы от непрофессиональных наблюдателей, отмечавших, например, аномалии в поведении животных. Наконец 4 февраля в 14 часов после серии слабых толчков - возможных предвестников - была объявлена общая тревога, люди выведены из зданий, а в 19 часов 36 минут последовал сильнейший толчок, разрушивший 90% всех сооружений города Хайченг.

Из 600 тысяч горожан погибли около 2 тысяч человек и еще 27 тысяч получили ранения. Но если бы не принятые меры, число пострадавших могло достичь 150 тысяч. Впрочем, эйфория от успешного прогноза продолжалась недолго: 28 июля 1976 года непредсказанное разрушительное Таншаньское землетрясение оставило под руинами китайских городов (в том числе и в Пекине) сотни тысяч человек. В последующие годы в Китае удавалось предсказывать землетрясения, но значительно чаще стихия наносила удар неожиданно. При этом неподтверждавшиеся прогнозы не раз порождали панику среди населения и приводили к большим экономическим потерям, так что в дальнейшем даже было решено ограничить практику проведения эвакуационных мероприятий.

Неудачу китайской программы предсказания землетрясений можно было бы списать на подверженность народных наблюдателей вспышкам особой бдительности или, наоборот, неоправданного благодушия. Если так, тогда решение проблемы должны обеспечить развитые сети геофизических наблюдений. Именно на это сделали ставку США и Япония . Причем регистрацией колебаний земной коры дело не ограничивалось. Измерялись уровень, температура и химический состав воды в скважинах, скорости движения земной поверхности, аномалии гравитационного и геомагнитного полей, проводился мониторинг атмосферных, ионосферных и геоэлектрических явлений. В Советском Союзе не хватало возможностей для развертывания региональных сетей наблюдения, и вместо этого был создан ряд высококлассных локальных полигонов для комплексных геофизических наблюдений. Ожидалось, что успех придет благодаря исследованиям процесса подготовки землетрясений и новым способам распознавания аномалий, в частности, с использованием методов искусственного интеллекта - благо сильных математиков и геофизиков в стране хватало.

Но надежды на технику тоже не оправдались. Огромный рост объема получаемой геофизической информации не привел к качественному росту эффективности прогноза. Геофизикам удалось пронаблюдать большое число различных физических аномалий, предположительно связанных с процессами подготовки землетрясений (наподобие, например, быстрых движений земной поверхности перед Хайченгским землетрясением). Однако подавляющее большинство из них не обнаруживались при других землетрясениях или на других полигонах. Несмотря на все усилия, так и не удалось получить эффективный и экономически оправданный прогноз землетрясений, при котором предотвращенные потери устойчиво превосходили бы ущерб от ложных тревог.

Какие бывают прогнозы землетрясений?

В строгом смысле слова прогноз землетрясения - это заблаговременное определение места, времени и силы ожидаемого сейсмического события. Но дать такой полный прогноз удается редко, и в практических целях используют более простые варианты. Первым приближением к прогнозу служит сейсмическое районирование, отвечающее на вопрос, какой силы подземные толчки в принципе могут ожидаться в данной местности. Следующие степени приближения по времени дают соответственно долгосрочный (десятки лет), среднесрочный (годы, месяцы) и краткосрочный (дни, часы) прогнозы землетрясений. Долгосрочный прогноз часто основывают на гипотезе сейсмического цикла, предложенной в середине 1960-х годов Сергеем Александровичем Федотовым, ныне академиком РАН. Ее суть состоит в том, что разрушительные землетрясения (с магнитудой 7,5 и более) повторяются в сейсмоактивных районах квазипериодически с интервалом 140 ± 60 лет, причем на разных стадиях этого цикла характер сейсмического режима меняется. С учетом районирования и параметров сейсмического цикла выделяются потенциально наиболее опасные области на срок в десятки лет, и в них концентрируются исследования с целью уточнения пространственных и временных рамок возможного сильного землетрясения. Проблема прогноза землетрясений привлекает большое число непрофессионалов. Кажется, что заниматься прогнозом так же просто, как писать стихи (а кто этим не баловался в своей жизни?). Любители обычно недостаточно осведомлены о сути проблемы, но, что хуже, редко бывают строги в своих оценках полученного результата. Типичен случай, когда результаты и алгоритм прогноза все время подгоняются их автором под поступающую новую информацию, вследствие чего создается сильно завышенное впечатление о точности применяемого метода. Сравнивая такой прогноз со строгими профессиональными результатами, любитель часто приходит к ошибочному выводу о высокой эффективности своего детища.

Время глубокого скепсиса

Постепенно в отношении самой возможности прогноза землетрясений стал развиваться глубокий скепсис, особенно сильный в тех странах, где были созданы технически наиболее совершенные сети наблюдений и где перспектива получения надежного прогноза еще недавно казалась такой близкой. При этом сомнения в возможности прогноза получили весомую теоретическую поддержку. В сейсмологии известен эмпирический закон Гутенберга - Рихтера. Он связывает число и силу толчков степенным соотношением: при увеличении энергии землетрясения в 1000 раз (на 2 единицы магнитуды) количество событий такого масштаба уменьшается примерно в 100 раз. Отсюда, кстати, вытекает важный вывод, что львиная доля всей выделяемой в земной коре сейсмической энергии приходится на небольшое число сильнейших событий. Именно они, когда задевают крупные города, причиняют наибольший ущерб. Сейсмологи без особого успеха пытались объяснить закон Гутенберга - Рихтера с самого его открытия. Однако во второй половине ХХ века выяснилось, что такой закон распределения встречается не только в сейсмологии. Сходным образом распределяются населенные пункты по числу жителей, компании по величине капитала, военные конфликты по числу жертв. В физике степенные законы распределения типичны для критических процессов (например для фазовых переходов).

Чтобы объяснить широкое распространение степенных распределений, американец Курт Визенфельд (Kurt Wiesenfeld), датчанин Пер Бак (Per Bak) и китаец Чао Танг (Chao Tang) выдвинули в 1987 году весьма плодотворную идею развития самоорганизованной критичности, или, коротко, СОК-гипотезу. Она утверждает, что сложные динамические системы, в частности земная кора, самопроизвольно эволюционируют в направлении критического состояния с сильным взаимодействием соседних элементов.

Сейсмостойкие здания могут даже падать, не разрушаясь. Тайпей, 1999 год. Фото GLENN SMITH/SYGMA/CORBIS/RPG

В таком состоянии в системе могут развиваться события самого разного масштаба подобно тому, как в большой толпе раздраженных людей периодически возникают то мелкие, то крупные стычки, а иногда, казалось бы, без видимой причины, вся толпа может прийти в движение. Каждое отдельное такое движение непредсказуемо, но статистически можно определить их вероятность. Модель СОК позволила объяснить, почему для самых разнообразных природных систем типично возникновение степенных законов распределения. Стало естественным объяснять такие распределения активным динамическим характером порождающей его системы.

СОК-гипотеза давала основание рассматривать литосферу Земли (земную кору и верхнюю часть мантии) как среду, постоянно находящуюся в неустойчивом состоянии. Но отсюда следовало, что реализация в данный момент того или иного землетрясения - исключительно дело случая и принципиально непредсказуема. Случайный взмах крыльев «бабочки Брэдбери» может привести в действие спусковой механизм, вызывающий катастрофические изменения. Если все так, то проблема предсказания землетрясений снимается, как принципиально неразрешимая, а то и вовсе «ненаучная», вроде попыток изобрести вечный двигатель. Говорить о предсказании землетрясений в части международного научного сообщества стало считаться дурным тоном, и даже само слово «предсказание» было изгнано из научной литературы. Если уж приходилось касаться этой щекотливой темы, то пользовались менее обязывающим словом «прогноз». Мода в науке не менее требовательна, чем в одежде, и в 1990-х годах в США и Японии исследовательский проект, ставящий целью поиск методов предсказания землетрясений, имел весьма мало шансов получить поддержку. В 1994 году конгресс США даже принял особое решение о прекращении целевого субсидирования программ прогноза землетрясений и переводе усилий на задачи сейсмостойкого строительства.

В самом деле если прогноз невозможен, то следует заняться другими вопросами, например развитием программ быстрого оповещения. Своевременная информация о приближающихся волнах цунами уже спасла тысячи жизней. Если бы в Индонезии , на Цейлоне и в Индии существовали такие системы, число жертв гигантского Суматранского землетрясения 2004 года было бы намного меньше. Разрабатываются и еще более быстрые системы оповещения, нацеленные, например, на остановку скоростных поездов и опасных производств за то небольшое время, пока сейсмическая волна со скоростью 6-8 км/с распространяется по земной коре от эпицентра землетрясения до потенциально опасного объекта.

Приметы и предвестники

Вечером 11 ноября 1855 года в столице Японии Эдо (современный Токио) горизонт был подернут дымкой, от земли поднимался странный ветерок и туман, называемый в Японии «чики», но звезды горели необычайно ярко. И старик сторож сказал князю, что такая же погода была в Етиго и Синсю, когда он чудом пережил два сильных землетрясения. Над ним посмеялись, но он наварил запас риса, погасил везде огонь и стал ждать. Ночью земля затряслась, дома повалились, но благодаря предусмотрительности сторожа пожара на его дворе не было. Японский геофизик профессор Цуней Рикитаке (Tsuneji Rikitake), автор модели возникновения земного магнитного поля, посвятивший специальное исследование обоснованности народных примет, предсказывающих землетрясения, считает эту историю легендой. И все же старый сторож, возможно, по-своему был прав. Установлено, что при сейсмической активизации из земли может выделяться особенно много радиоактивного газа радона. Испускаемые им заряженные частицы ионизируют молекулы воздуха, порождая центры конденсации влаги и способствуя образованию тумана. Иногда зоны активных геологических разломов трассируются из космоса или с самолета по линейным скоплениям облаков. Предпринимались даже попытки прогноза землетрясений по картам облачности, впрочем без особого успеха. Проявления предвестников землетрясений очень мозаичны, поэтому естественно стремление сейсмологов использовать характеристики, осредняющие их проявление на большой площади. Такой характеристикой могут быть параметры ионосферы (особенно нижних ее слоев, более подверженных воздействию с поверхности Земли). Неоднократно фиксировалось аномальное поведение ионосферы в районах сильных землетрясений. Предложен ряд моделей, связывающих развитие аномалий в ионосфере с выбросами радона, изменением напряженности электрического поля в атмосфере, возбуждением ионосферы низкочастотными упругими колебаниями, возникающими при подготовке землетрясений. Показано, что средние статистические характеристики ионосферы изменяются во время подготовки и реализации землетрясений. Однако эти изменения малы и выявляются только статистически для большого числа землетрясений, а для отдельных событий незаметны на фоне шума.

Скепсис идет на убыль

Вывод о принципиальной непредсказуемости землетрясений встретил не только поддержку, но и естественный- почти на подсознательном уровне - протест. Разве такой масштабный процесс, когда целые хребты смещаются на десятки метров, может запускаться совершенно спонтанно, без всякой подготовки? А если имеет место подготовка, значит, ее можно наблюдать. Естественно, что работы в области прогноза землетрясений не прекратились, и вскоре стало ясно, что тезис об их принципиальной непредсказуемости не отвечает реальной ситуации или, по меньшей мере, требует существенных уточнений. В самом деле ведь на Земле существуют не только сейсмоактивные, но и асейсмичные районы, где землетрясений практически не бывает. Вряд ли литосферу и этих областей также можно описывать как непрерывно находящуюся в критическом состоянии. А значит, бывают разные степени критичности, и соответственно можно оценивать вероятность возникновения сильного землетрясения. Если такая вероятность изменяется в сотни и тысячи раз, то это уже отнюдь не бесполезная информация.

Из модели сильного землетрясения как критического процесса следовали определенные выводы о характере его возможных предвестников. Например, естественно предположить, что сейсмический режим перед сильным землетрясением становится более критическим, нежели чем в спокойное время. В процессе развития критичности резко увеличивается чувствительность среды к внешним воздействиям. И действительно, сейсмологи не раз замечали, что перед сильными землетрясениями литосфера сильнее откликается на прохождение приливных волн или циклонов. Причем эти слабые по геологическим меркам воздействия могут играть роль спускового крючка. Например, крупные землетрясения чаще случаются вблизи полнолуния и новолуния, когда приливы наиболее высоки. Один из характерных признаков роста критичности - аномально высокая изменчивость в интенсивности сейсмического режима, то есть наличие отчетливых периодов активизации и затишья. На повышенную критичность указывает также рост числа разнесенных пространственно, но близких по времени сейсмических событий, а также увеличение доли относительно сильных толчков.

Подобные признаки и ранее отмечались как характерные для предвестникового режима. Но прежде это были эмпирически замеченные соответствия, а теперь они получали теоретическое обоснование. Это был значительный прогресс. Раньше прогноз землетрясений строился, по сути, на опыте и интуиции сейсмологов. Теперь же стало возможным проверять аномалии на соответствие некоторому теоретически ожидаемому сценарию развития неустойчивости в соответствии с СОК-гипотезой. Так из совокупности эмпирических, не вполне достоверных корреляций начало вырастать нечто, отдаленно напоминающее физическую теорию сейсмического процесса.

Впрочем сомнения в предсказуемости сильных землетрясений тоже пошли на пользу науке, поскольку стимулировали тщательную проверку всевозможных методов прогнозирования. Стало правилом хорошего тона тщательно и однозначно формулировать алгоритм прогноза и регулярно публиковать его новые версии. Это позволяет всем желающим самостоятельно его проверять и оценивать эффективность. Почти все алгоритмы прогноза были, кстати, разработаны в рамках советской (а затем российской) сейсмологической школы. Дольше и тщательнее других проверялся алгоритм среднесрочного прогноза сильных землетрясений с магнитудой более 8, получивший обозначение М8. За время проверки он предсказал 7 из 9 сильных землетрясений с упреждением не более 5 лет. Для выдачи экстренных предупреждений этого, конечно, недостаточно. Однако такой прогноз позволяет заблаговременно принять меры по снижению возможного ущерба от ожидаемого удара стихии и повысить готовность к проведению спасательных мероприятий. Сравнение этих прогнозов с моделью случайного угадывания показало, что, по крайней мере в статистическом смысле, предсказывать землетрясения можно. В результате с конца прошлого века скепсис относительно возможности прогнозирования в сейсмологии пошел на убыль, и тематика предсказания землетрясений снова получила гражданские права в науке.

Критические явления

Критические явления и сопутствующие им степенные законы распределения возникают тогда, когда система состоит из большого числа объектов, сильно взаимодействующих между собой. Это приводит к согласованному поведению многих частиц и развитию «конкуренции» между разными типами такого согласованного поведения. Так, при метастабильном фазовом переходе, скажем, при вскипании перегретой воды, стоит возникнуть зародышу новой фазы, как к нему сразу присоединяется и переходит в новую фазу большое число окружающих его атомов. При этом возникает конкуренция за атомы с соседними зародышами, от хода которой зависит распределение образовавшихся пузырьков по размерам. Аналогично более крупные города сильнее привлекают людей, предоставляя больше возможностей в выборе работы и отдыха. Подобный кооперативный тип поведения резко отличается от того, когда отдельные элементы системы ведут себя независимо, подобно молекулам идеального газа.

Эпоха раздвоенного сознания

Почему же так трудно прогнозировать землетрясения? Попробуем сравнить эту задачу с прогнозом погоды. На собственном опыте мы знаем, что он не всегда точен. А теперь представьте, что синоптики не располагают никакими средствами измерения внутри атмосферы - им доступны лишь замеры температуры, влажности и давления под тонким слоем почвы. Конечно, такие данные несут определенную информацию о метеорологических процессах, но вряд ли построенный по ним прогноз будет хорош. А ведь сейсмологи (по крайней мере, до конца 2007 года) находились именно в таком положении: прямой доступ на глубины, где происходят землетрясения, был невозможен. Ситуация в земных недрах оценивалась сугубо косвенным образом, по изменениям, сделанным на поверхности Земли.

Другая причина трудностей состоит в том, что мы, по сути, не знаем, что такое землетрясение. Еще в 1980-х годах известный советский сейсмолог Николай Виссарионович Шебалин настаивал, что предсказание землетрясений невозможно, так как для них нет хорошей физической модели. Это утверждение нуждается в некоторых пояснениях. Принято считать, что причиной землетрясений являются высокие тектонические напряжения, а сами они трактуются по аналогии с разрушением обычного образца горной породы, только очень большого. Нетрудно взять образец, положить под пресс и, постепенно повышая усилие, наконец его разрушить. Можно также (пусть косвенным путем и весьма грубо) оценить величину напряжений в литосфере. Так вот, оказывается, что эти напряжения много меньше тех, что требуются для разрушения пород. Как же тогда возникают землетрясения? Пока непонятно. Особенно загадочно существование так называемых глубоких землетрясений. При огромных давлениях внутри мантии Земли (а очаги землетрясения фиксируются до глубины в 700 километров) даже для того, чтобы произошла подвижка по уже готовому разлому, требуются гигантские напряжения. А никаких указаний на существование столь высоких напряжений нет и в помине. Наоборот, все данные говорят о том, что напряжения в мантии весьма умеренные. Пожалуй, если бы глубоких землетрясений не было, то в учебниках вполне убедительно доказывалось бы, что их и быть-то не может. Без удовлетворительной физической модели набор возможных прогнозных признаков интерпретировать трудно. Остается, по сути, отслеживать вариации интенсивности сейсмического процесса и пытаться выявить неустойчивости в его режиме. Именно на такой подход и ориентированы существующие в настоящее время методы прогноза.

Таким образом, к началу XXI века сейсмология оказалась как бы раздвоенной. С одной стороны, доминирующей теоретической концепцией остается модель землетрясения как критического явления. Она показала себя очень полезной для понимания совокупности процессов, сопутствующих подземным толчкам, и ей не видно достойной альтернативы. Но из этой же модели вытекает случайность и непредсказуемость землетрясения. С другой стороны, имеется опыт прогнозирования. И пусть даже качество прогнозов недостаточно для практического использования, оно явно намного выше, чем можно было бы ожидать при случайном угадывании. Теоретически невозможный прогноз оказался отчасти реализованным на практике.

Одним из путей преодоления этого противоречия стал переход от детерминированного понимания задачи предсказания землетрясений к вероятностной модели прогноза. Изменение внешних условий и внутренняя эволюция геологической среды влияют на вероятность реализации в ней сильного землетрясения, но само оно все же остается случайным событием. Подвижка, начавшаяся в области высокой вероятности сильного события, может остаться микроземлетрясением (что чаще всего и случается), но имеет также шанс развиться в сильный толчок. При таком подходе и овцы целы (модель землетрясения как критического явления сохраняется), и волки сыты (вероятностный прогноз оказывается, тем не менее, вполне возможен).

Необычные землетрясения

Крайне редко землетрясения случаются даже в районах, которые считаются асейсмичными. Самое удивительное из таких событий произошло 25 марта 1998 года в море Сомова у островов Баллени, на расстоянии около 500 километров от побережья Антарктиды, на стабильной океанической плите. Между тем, по современным сейсмотектоническим представлениям такие плиты должны быть абсолютно «пассивными». В континентальных асейсмичных областях землетрясения обычно приурочены к древним зонам опусканий - грабенам (узким прогибам земной поверхности, наполненным осадочными породами). Подобные зоны часто связаны с современными долинами крупных рек. Например, такая структура соответствует правому берегу реки Москвы в черте города и ниже по течению. Русская платформа в целом асейсмична. Подавляющее большинство регистрируемых на ней толчков связано со взрывами и карстовыми явлениями. Однако есть и еще один источник сейсмичности. В земной коре существуют направления (каналы) преимущественного распространения сейсмических волн. Благодаря одному из таких каналов на Русской платформе, в частности в Москве, хорошо ощущаются колебания от толчков, происходящих в зоне глубокой сейсмичности в Румынии. Уверенность в том, что на Русской платформе не бывает собственных местных землетрясений, настолько укоренилась, что при упоминании в летописях о подземных толчках, скажем, в Москве или Твери, сейсмологи, как правило, сразу пересчитывают их параметры на случай предполагаемого глубокого очага в Румынии. При всей обоснованности такого подхода он может привести к утере информации о действительно бывших в прошлом заметных землетрясениях на Русской платформе. В некоторых случаях сейсмологи сталкиваются с искусственными (спровоцированными) землетрясениями. Например, в окрестностях крупных водохранилищ вероятность сейсмического события заметно возрастает после толчков другого, возможно, далекого землетрясения или, например, сильного подземного ядерного взрыва. В связи с этим в прессе периодически появляются сообщения, будто те или иные землетрясения были инициированы в военных или политических целях. Однако даже если бы подобные планы действительно существовали, любому специалисту очевидно, что уровень развития современной сейсмологии не позволяет их реализовывать.

Новые надежды

В последние годы в исследованиях по прогнозу землетрясений стали широко применяться космические средства наблюдения. Сильные землетрясения - это крупномасштабные события, дающие мозаичную картину предвестников на большой территории. Новые спутниковые технологии позволяют отслеживать деформации земной поверхности, изменения температуры почв при выбросах глубинных флюидов, изменения в свойствах ионосферы, связанные с подготовкой и реализацией сильных землетрясений.

В работах по прогнозу землетрясений NASA, например, делает ставку на массированное использование высокоточной системы глобального позиционирования GPS, а также появившихся чуть позже спутниковых радаров с синтетической апертурой InSAR. GPS позволяет с точностью до миллиметров отслеживать положения точек земной поверхности, где установлены стационарные приемники, и оценивать скорости их движения. Предполагается, например, что отклонения от равномерного смещения вдоль разломов системы Сан-Андреас в Калифорнии - одного из самых сейсмически активных районов Северной Америки - позволят выявить места зацепок и накопления напряжений, то есть вероятные места готовящихся землетрясений. Технология InSAR дает площадные изображения смещений земной поверхности за интервалы времени между последовательными обзорами территории. Объединение данных GPS и InSAR обеспечивает возможности мониторинга движений земной поверхности, немыслимые еще несколько лет назад. Остается только непростая задача: выделить из этих данных сигнал, позволяющий прогнозировать место и силу будущего землетрясения.

Другой прорыв в исследовании землетрясений реализуется в настоящее время совместно Геологической службой США (USGS) , Международной научной программой глубокого континентального бурения (ICDP) и Национальным научным фондом США (NSF). Он состоит в том, чтобы подобраться к самому очагу землетрясения. С этой целью начиная с 2004 года бурилась специальная скважина, которая в прошлом году пересекла тело разлома Сан-Андреас на глубине 3 километров. В настоящее время в скважине устанавливают приборы глубинной обсерватории SAFOD (San Andreas Fault Observatory in Depth) , которые будут передавать информацию непосредственно из зоны готовящихся очагов землетрясений.

Среди современных европейских систем наблюдения особый интерес представляет французская программа на основе запущенного в 2004 году спутника DEMETER (Detection of ElectroMagnetic Emissions Transmitted from Earthquake Regions). Она предусматривает проведение как дистанционных, так и наземных наблюдений с целью проверки и привязки космических данных. Эта программа интересна тем, что ориентирована на прогнозирование землетрясений по данным об изменении состояния ионосферы. Правда, пока еще рано говорить о получении на данном направлении значимых результатов.

Подводя итог, можно сказать, что согласно современным представлениям прогноз землетрясений принципиально возможен, по крайней мере, в вероятностном понимании. Но какой точности прогноза реально достичь - еще не ясно. Хочется также отметить, что, хотя справиться с задачей пока не удалось, работы по прогнозу землетрясений принесли немало пользы для науки в целом. Они оказались пионерскими для широкой и крайне актуальной сферы исследований: изучения признаков неустойчивости в поведении сложных динамических систем самой разной физической природы. Ранее, в середине прошлого века, сейсмология оказалась первой областью знания, где стала понятна особая роль степенных распределений. В настоящее время разработанные в сейсмологии общие подходы применяются к оценке устойчивости самых разных динамических систем, вплоть до экономических и социальных.

Профессор Эльчин Халилов - Президент Глобальной Сети Прогнозирования Землетрясений GNFE (UK) и Председатель Международного Комитета GEOCHANGE (Germany), представил прогноз сейсмической активности мира до 2026 года от имени вышеуказанных организаций.


Эльчин Нусратович, что нас ожидает в 2017 году и последующие годы с точки зрения возможности сильных землетрясений?

Прежде всего, я хотел бы дать краткий анализ того, что происходило в предыдущий период, а затем перейти к прогнозу на будущее. Среднесрочный прогноз сейсмической активности мира предоставляется впервые после прогнозов представленных в первом докладе Международного Комитета по Глобальным Изменениям Геологической и Окружающей Среды GEOCHANGE. Этот доклад имел большой общественный резонанс в мире. Напомню, что он был послан Генеральному Секретарю ООН, в Еврокомиссию, в Организацию Исламского Сотрудничества, ЮНЕСКО и другие авторитетные международные организации, а также всем главам государств. В 200 - страничном докладе впервые, на общественный суд, был представлен комплексный и детальный анализ глобальных изменений в геологической и окружающей среде за последние 120 лет.

Что говорилось в докладе GEOCHANGE?

Было показано, что начиная с 1998 года общий прямолинейный тренд постепенного повышения активности всех стихийных бедствий резко изменил свой характер и стал нарастать по экспоненте. Этот процесс сопровождался выбросом гигантской эндогенной энергии Земли и серьезными изменениями в окружающем нашу планету космическом пространстве. В частности, это касается магнитосферы - магнитной оболочки Земли, предохраняющей атмосферу и поверхность от воздействия потоков космических частиц высоких энергий и жесткого космического волнового излучения.

Так вот, северный магнитный полюс Земли, который до этого колебался со скоростью 10 км в год, стал двигаться в сторону Западной Сибири с огромной скоростью, порой достигающей 70-80 км в год. Более того, комплексные геофизические станции ATROPATENA, размещенные в: Индонезии, Пакистане, Азербайджане, на Украине и в Турции, зарегистрировали мощнейшие аномалии гравитационного поля на уровне ядра Земли, что может свидетельствовать о выбросе гигантской энергии в ядре, ставшей основной причиной резкого возрастания сейсмической и вулканической активности Земли, числа сильных цунами, торнадо, штормов и ураганов, гигантских провалов в верхних слоях Земли, наводнений, оползней и других стихийных бедствий и природных явлений.

Стали регистрироваться по всей планете необычные низкочастотные звуки, которые исходили из верхних слоев атмосферы. Результаты исследований GNFE с помощью специальных инфразвуковых регистраторов показали, что эти звуки могут являться результатом воздействия на ионосферу акустико-гравитационных волн, возникающих под воздействием мощных солнечных вспышек и последующего солнечного ветра, а также до и после сильных землетрясений и извержений вулканов.

С чем связано такое «нестандартное» поведение нашей планеты?

В период с 1998 года до 2012 год включительно, мы наблюдали пиковые значения подавляющего большинства стихийных бедствий, затем общая геодинамическая, атмосферная и солнечная активность пошли на спад, что и следовало ожидать согласно теории о глобальной цикличности природных процессов. На самом деле это поведение планеты можно назвать стандартным, просто людям свойственно быстро забывать о различных природных катаклизмах и переключаться на насущные бытовые проблемы и вспоминать о них, когда они вновь проявляют себя.

Кстати, тот факт, что все природные процессы, в частности, геодинамические связаны друг с другом и на них огромное влияние оказывают различные космические факторы: солнечная активность, расположения планет Солнечной системы, положение Земли на орбите, положение Солнечной системы на Галактической орбите и т.д., был детально исследован и описан в фундаментальной монографии - Хаин В.Е., Халилов Э.Н. Цикличность геодинамических процессов: ее возможная природа (МГУ им. Ломоносова, Москва, 2008 г.), которую можно бесплатно скачать на сайте:

Таким образом, как видно из представленных графиков, в настоящее время сейсмическая активность Земли переживает глубокий минимум, что выражено в резком снижении числа сильных землетрясений. Такой глубокий минимум и относительно большой период сейсмического затишья свидетельствуют о накоплении в недрах Земли гигантской тектонической энергии, которая скоро вырвется на поверхность. Используя математический аппарат по выявлению скрытых периодичностей, в том числе путем спектрального анализа, а также другие методики - тренд анализ, теорию резонанса, нами сделана попытка дать очередной среднесрочный прогноз сейсмической активности Земли до 2026 года.

Как видно на прогнозных графиках сейсмической активности Земли, очередной пик сейсмической активности для землетрясений с магнитудой М от 6.0 до 6.9 приходится на 2017 - 2026 годы с максимальным значением в 2018 - 2023 годах.

Для землетрясений с М от 7.0 до 7.9 высокие значения сейсмической активности будут наблюдаться в 2016 - 2023 годах с максимальным значением в 2018 - 2021 годах.

Для катастрофических землетрясений с М ≥ 8 высокий уровень ожидается в 2017 - 2025 годах с максимальными значениями в 2018 - 2021 годах.

ЭФФЕКТ НАТЯНУТОЙ ТЕТИВЫ

Каким образом делается среднесрочный и долго срочный прогноз сейсмической активности на основании изучения цикличности?

Существует сложный математический аппарат, на котором базируются данные исследования. Прежде всего, это методы анализа применяемые в математической статистике, в частности, выявление скрытой периодичности путем линейных преобразований, тренд анализ, спектральный анализ и другие. Нами были разработаны специальные методы анализа цикличности сейсмической и вулканической активности и их последующего прогноза. Эти методы описаны в фундаментальной монографии (Хаин В.Е., Халилов Э.Н. Цикличность геодинамических процессор: ее возможная природа. МГУ им. М.В. Ломоносова. Москва, Научный Мир, 2009, 520 с.).

Я хотел бы в более популярной форме изложить основные принципы, которые берутся нами за основу среднесрочного и долгосрочного прогноза циклов сейсмической активности. Прежде всего, это понимание принципа сохранения энергии. Цикличность любого процесса - это неравномерное перераспределение выделения энергии в виде периодических импульсов (циклов). Между тем, общий средний поток выделяемой энергии остается неизменным. То есть, если мы наблюдаем очень интенсивный импульс выделившейся сейсмической энергии с большой амплитудой и периодом, то после него обычно следует глубокий минимум выделения энергии. Эта закономерность наблюдается на протяжении всей истории геологического развития Земли. В то же время, чем более глубокий минимум сейсмической активности и более длительный период сейсмического затишья, тем более высокая амплитуда последующего цикла сейсмической активности.

Для аналогии, мы можем сравнить этот процесс с натянутой тетивой. Чем сильнее лучник натягивает тетиву, тем больше времени и энергии затрачивается на ее натяжение. Естественно, тем больше выделяется кинетической энергии при отпускании тетивы и, тем дальше летит стрела. Примерно, то же самое происходит и процессом накопления и разрядки сейсмической энергии. Эта аналогия продемонстрирована на конкретном примере графика среднесрочного прогноза сейсмической активности для землетрясений с магнитудой М ≥ 8. На рисунке видно, что последнему прогнозируемому четвертому циклу сейсмической активности предшествует очень глубокий минимум сейсмической активности, приходящийся на 2014-2015 годы и длительный период сейсмического затишья.

Основываясь на этих принципах дается прогноз ожидаемого очень интенсивного цикла сейсмической активности с большой амплитудой и максимальной вероятностью катастрофических землетрясений в период 2017 - 2025 годов. Что касается территорий, где ожидаются сильные и катастрофические землетрясения, то они хорошо известны сейсмологам. На первом месте по степени и масштабам сейсмического риска находится так называемое «Тихоокеанское Огненное кольцо» (ТОК). Ниже приводится карта с изображением территории «ТОК». В Тихоокеанском огненном кольце произошли около 90 % всех мировых землетрясений и 80 % самых мощных из них.

Вторая по мощности сейсмическая зона (5-6 % землетрясений и 17 % самых мощных землетрясений мира) - это Альпийско-Гималайский складчатый поясА, который начинается около Явы и Суматры, идет через Гималаи и Средиземноморье до Атлантического океана.

Третья по выделяемой энергии зона землетрясений - это Срединно-Атлантический хребет.

Что касается других видов стихийных бедствий - извержений вулканов, цунами и т.д., то эти данные будут представлены несколько позже.

Большое спасибо за актуальное интервью.

Пресс служба GNFE

www.seismonet.com

в этом видео известный ученый-сейсмолог профессор Эль чин Халилов озвучил результаты исследований сейсмической активности за последние десятилетия, а также прогнозы землетрясений на ближайшее время.

В 1998 году произошло некое изменение, некий скачек в геологической среде, мощный выброс энергии. Именно с этого момента начались очень многие изменения в окружающей среде. Что произошло в 1998 году?

2016 год был переломным в отношении сейсмической активности. В ближайшие годы, начиная с 2017, стоит ожидать рост числа землетрясений и силы подземных толчков по всему миру.

На 2019 - 2022 годы согласно прогнозу Эльчина Халилова приходятся пики числа землетрясений с магнитудой более 8.

Проблемы связанные с глобальными катаклизмами, по мнению ученого, несопоставимы по масштабам с тем, чему человечество сегодня уделяет свое внимание. Люди только объединившись смогут противостоять грядущим,волнующим нас событиям.

Тщательный анализ всех имеющихся данных позволяет предвидеть, в каких районах и с какой силой могут проявляться землетрясения в будущем. В этом сущность проблемы сейсмического районирования России, на основании которого составляются специальные инструкции и правила, регулирующие сейсмостойкое строительство. Сохранение зданий от разрушений при подземных толчках обеспечивается высоким качеством строительства, укреплением стен поэтажными железобетонными поясами, ограничением этажности, упрощением плана здания с приближением его к изометрическим формам, ликвидацией выступов, балконов, парапетов и др.

Карта сейсмического районирования, составленная Гео­физическим институтом Академии наук РФ, одобрена Советом по сейсмологии при Президиуме Академии наук РФ и утверждена Правительством РФ в качестве официального документа, по которому устанавливается исходная цифра сейсмической балльности (т.е. силы вероятных землетрясений) для всех населенных пунктов сейсмических районов РФ. Согласно этой карте, различные сейсмические зоны занимают соответствующие площади.

В дальнейшем исследования направляются на уточнение имеющейся карты сейсмического районирования, разработку методов сейсмического районирования, изучение влияния местных геологических условий на сейсмический эффект, тщательное и глубокое изучение геологических условий возникновения землетрясений. Все это требует широкого развития сейсмической службы и дальнейшей разработки методов интерпретации сейсмических наблюдений. Конечная задача подобных исследований состоит в решении проблемы прогноза, т. е. определения более точного момента, времени и места возможного землетрясения.

Проблема прогноза землетрясений состоит в последовательном уточнении места и времени, в пределах которых следует ожидать разрушительные землетрясения той или иной энергии.

Различают несколько стадий прогноза:

на годы (долгосрочный прогноз);

на месяцы (среднесрочный прогноз);

на неделю и меньше (краткосрочный прогноз);

на дни и часы (непосредственный прогноз).

На территории страны развернута Единая система сейсмических наблюдений (ЕССН), включающая сеть сейсмических станций, расположенных в разных точках страны, и вычислительные обрабатывающие центры. На сейсмической станции производятся регистрация сейсмического волнового поля, определение характеристик сейсмического сигнала: время поступления, тип сейсмической волны, максимальная амплитуда в микрометрах (мкм) и соответствующий ей период. Эти данные передаются в вычислительно-обрабатывающий центр по различным каналам связи. В вычислительном центре производится определение характеристик очага землетрясения: координаты эпицентра, глубина, магнитуда, время начала землетрясения. Помимо сейсмической сети станций развернута сеть станций наблюдения за изменениями геомагнитного поля Земли, которые являются предвестниками землетрясений. Такая сеть станций сейсмических наблюдений предназначена, в основном, для определения долгосрочного прогноза.

На территории Российской Федерации и бывших союзных республик работает Среднеазиатский региональный центр прогноза землетрясений, созданный на базе Института сейсмостойкого строительства и сейсмологии АН Таджикистана. Действует Кавказский региональный центр прогноза землетрясений в Тбилиси. Проводятся исследования в территориальном центре прогноза на Камчатке. Главная цель проводимых исследований - осуществление долгосрочных прогнозов.

Со среднесрочным прогнозом дело обстоит сложнее. Здесь счет идет уже на недели, для передачи и обработки данных дорог каждый день, и поэтому необходима автоматизированная система прогноза землетрясений. Элементы такой системы имеются в ряде регионов нашей страны.

С краткосрочным прогнозом положение тяжелое. Счет в таком прогнозе идет на дни и часы. Передачу данных надо вести в реальном времени. Это значит, что данные регистрации должны поступать в центр прогноза прямо после их получения на наблюдательных пунктах. Пункты расположены в различных труднодоступных местах, связи, как правило, нет. Единственный путь - связь через искусственные спутники Земли. В настоящее время системы краткосрочного прогноза в нашей стране и за рубежом еще не созданы. Однако технические средства для создания подобной системы имеются.

Отсутствует также в нашей стране и за рубежом система осуществления непосредственного прогноза.

Методы прогноза землетрясений основываются на наблюдении аномалий геофизических полей, измерении значений этих аномалий и обработке полученных данных. Соответственно различают несколько методов прогноза землетрясений.

Метод оценки сейсмической активности. Месторасположение и число толчков различной магнитуды могут служить важным индикатором приближающегося сильного землетрясения. Часто сильное землетрясение сопровождается большим числом слабых толчков. Выявление и подсчет землетрясений требуют большого числа сейсмографов и соответствующих устройств для обработки данных.

Метод измерения движения земной коры. Географические съемки с помощью триангуляционной сети на поверхности Земли и наблюдения со спутников из космоса могут выявить крупномасштабные деформации (изменения формы) поверхности Земли. На поверхности Земли проводится точная съемка с помощью лазерных источников света. Съемки требуют больших затрат времени и средств, поэтому такие измерения производят один раз в несколько лет.

Метод выявления опускания и поднятия участков земной коры. Вертикальные движения поверхности Земли можно измерить с помощью точных нивелировок на суше или море, мореографов в море. Поднятие и опускание участков земной коры может свидетельствовать о возможности сильного землетрясения.

Метод измерения наклонов земной поверхности. Для измерения вариаций угла наклона земной поверхности используются специальные приборы - наклономеры. Сеть наклономеров обычно устанавливают около разломов на глубине 1-2 м и ниже поверхности земли. Измерения на этой сети указывают на выразительные изменения наклонов незадолго до возникновения землетрясений.

Метод измерения деформации горных пород. Для измерения деформаций горных пород бурят скважину и устанавливают в ней деформографы, фиксирующие величину относительного смещения двух точек.

Метод определения уровня воды в колодцах и скважинах. Уровень грунтовых вод перед землетрясением часто повышается или понижается, по-видимому, из-за изменений напряженного состояния горных пород. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других - ниже.

Метод оценки изменения скорости сейсмических волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются, а также от содержания воды и других физических характеристик. При землетрясениях образуются различные типы сейсмических волн. Наибольший интерес среди этих волн представляют продольная и поперечная волны. Перед сильным землетрясением наблюдается резкое уменьшение отношения скоростей продольных и поперечных волн, что может явиться признаком, подтверждающим возможность землетрясения.

Метод регистрации изменения геомагнитного поля. Земное магнитное поле может испытывать локальные изменения из-за деформации горных пород и движений земной коры. С целью измерения малых вариаций магнитного поля используют специальные приборы - магнитометры.

Метод регистрации изменения земного электросопротивления. Одной из причин изменения электросопротивления горных пород может явиться изменение напряженности горных пород и содержания воды в земле, что, в свою очередь, может быть связано с возможностью возникновения земле­трясения. Измерения электросопротивления проводят с помощью электродов, помещаемых в почву на расстоянии нескольких километров друг от друга. При этом измеряется электрическое сопротивление толщи земли между ними.

Метод определения содержания радона в подземных водах. Радон - это радиоактивный газ, присутствующий в грунтовых водах и в воде скважин. Период полураспада его равен 38 суткам. Радон постоянно выделяется из земли в атмосферу. Перед землетрясением происходит резкое изменение количества радона, выделяющегося из воды глубоких скважин.

Метод наблюдения за необычным поведением животных, птиц, рыб. Теоретические основы этого метода еще не разработаны. Необычное поведение многих живых существ объясняется тем, что они гораздо более чувствительны к звукам и вибрациям, чем человек.

Для принятия решения по ликвидации последствий землетрясений необходимо умение оценить эти последствия.

Существует несколько способов оценки последствий землетрясений . Основу этих способов составляют использование карт сейсмического районирования, на которых выявлены очаги будущих землетрясений, построение для этих очагов моделей изосейст (т. е. линий равной балльности) и оценка вероятностей разрушения зданий различных типов, попадающих в область действия землетрясения.

Оценку последствий землетрясений для данного региона представляют в виде суммарного от ущерба всех землетрясений в течение заданного интервала времени. Методика получения данных оценок разработана в ИФЗ АН РФ. Данные оценки получены в виде величин сейсмического риска за интервал времени 20-25 лет. Эта методика основана на том, что землетрясения представляют собой случайный поток Пуассона, и не учитывает ущерб от повторных толчков (афтершоков). Полученные оценки представляют интерес для долгосрочного прогнозирования ущерба от землетрясений, причиняемого народному хозяйству.

Главной целью аварийно-спасательных и других неотложных работ при землетрясениях является поиск и спасение пострадавших, блокированных в завалах, в поврежденных зданиях, сооружениях, оказание им первой медицинской помощи и эвакуация нуждающихся в дальнейшем лечении в медицинские учреждения, а также первоочередное жизнеобеспечение пострадавшего населения.

Неотложные работы при землетрясениях направлены на локализацию, подавление или снижение до минимально возможного уровня воздействия вредных и опасных факторов, препятствующих проведению аварийно-спасательных работ и угрожающих жизни и здоровью пострадавших и спасателей, оказание пострадавшему населению необходимой помощи.

Аварийно-спасательные работы при землетрясениях должны начинаться немедленно и вестись непрерывно, днем и ночью, в любую погоду, обеспечивать спасение пострадавших в сроки их выживания в завалах.

В ходе ведения спасательных работ в завалах и в других сложных условиях могут назначаться микропаузы - "минуты тишины" продолжительностью 2-3 минуты для кратковременного отдыха и прослушивания завалов с целью поиска пострадавших.

Величина и структура потерь населения при землетрясениях определяются интенсивностью землетрясения; типами зданий и сооружений, в которых размещается население в момент толчков, и характером его размещение (открыто на местности, в зданиях и сооружениях различных типов). Вместе с тем структура травматических повреждений также зависит от положения тела человека в момент землетрясения. При этом механизм поражения людей в результате непосредственного воздействия факторов, причиной которых являются подземные толчки, может быть различным. Отечественные авторы считают, что при землетрясениях до 45 % травм возникает от падающих конструкций зданий, а 55 % - от неправильного поведения людей (паника, неумение укрыться, падения с высоты и т.п.).

Существенные особенности землетрясений состоят в том, что поражающее воздействие на людей, разрушение жилых домов, производственных зданий, сооружений и других народнохозяйственных объектов происходят в короткие сро­ки - считанные десятки секунд. При этом очень редко при­чиной человеческих жертв бывает непосредственное движе­ние (колебание) почвы. Большинство жертв является резуль­татом падения предметов, стекол, камней, стен и т. д., когда сильные колебания сотрясают, разрушают здания и соору­жения.

Основные причины несчастных случаев при землетрясениях:

· обрушение отдельных частей здания;

· падение (особенно с верхних этажей) битых стекол;

· зависание и падение на проезжую часть улицы разорванных электро­проводов;

· падение тяжелых предметов в квартире;

· пожары, вызванные утечкой газа из поврежденных труб и замыканием электролиний;

· неконтролируемые действия людей в результате паники.

Причины травм и гибели людей при всем их многообразии можно уменьшить, если усвоить порядок действий и выполнить ряд рекомендаций при землетрясении.

Не следует пугаться каждого землетрясения. Относительно слабые землетрясения (до 5 баллов) не причиняют ущерба. Но надо запомнить описание и опасные признаки землетр­сения, при котором сила колебаний сразу или постепенно достигла 5-6 баллов, после чего (в одной трети случаев) колебания становятся еще сильнее, достигая" 7 баллов и более. Если начинаются 8-9-балльные толчки до того времени, когда последуют самые сильные колебания и возникнет опасность разрушения здания, пройдет, скорее всего, 15-20 секунд. Наиболее сильные колебания длятся обычно несколько десятков секунд, расшатывая здания. Затем колебания идут на убыль в течение примерно 30 секунд или более.

Учитывая прочность здания, местонахождение в этом здании в данное время и названную величину запаса времени (15-20 секунд), можно выбрать разумный способ поведения во время сильного землетрясения: либо занять относительно безопасное место внутри здания, либо попытаться быстро покинуть его.

Усвоенный заранее порядок поведения людей на случай землетрясения в самых обычных условиях: дома, на работе, на улице, в кино, театре и т. д., - поможет действовать результативно и спокойно. Но надо быть готовым действовать, сообразуясь с конкретной обстановкой.

После сильной раскачки и толчков здание может начать разрушаться: могут падать отдельные плиты перекрытия или блоки капитальных стен. В этом случае попытка покинуть здание во время землетрясения может быть менее рискованной, чем пребывание внутри здания. Однако необходимо иметь в виду, что ни разрушение перегородок (некапитальных стен), ни падение навесных стеновых панелей каркасных зданий не указывает на то, что здание неизбежно должно рухнуть.

В сейсмоопасных районах для выработки эффективных действий на случай землетрясения с целью уменьшения числа травм и человеческих жертв необходимо заблаговременно усвоить следующие рекомендации:

· Наметить заранее план действий в чрезвычайной обстановке и договориться о месте сбора семьи после землетрясения, составить список телефонов, чтобы можно было в случае необходимости вызвать противопожарную, медицинскую помощь, милицию или представителей МЧС РФ.

· Определить путь выхода из здания с учетом малого запаса времени до наибольших колебаний и толчков. Землетрясение может случиться ночью, при этом в дверях и проходах будут скопления людей, и это может по­мешать быстрому выходу из здания. Поэтому для эвакуации необходимо использовать окна первого этажа.

· Определить наиболее безопасные места (в квартире, на работе, вблизи рабочего места), где можно переждать толчки. Это проемы капитальных внутренних стен, углы, образованные капитальными внутренними стенами, места у капитальных внутренних стен, у колонн и под балками каркаса. Наиболее опасными местами в зданиях во время землетрясения являются большие застекленные проемы наружных и внутренних стен, угловые комнаты, особенно последних этажей, лифты.

· Регулярно проверять состояние электропроводки, водопроводных и газовых труб. Все взрослые члены семьи (жильцы дома) должны быть обучены отключению электричества, газа и воды в квартире, в подъезде, в доме, а также оказанию первой медицинской помощи, прежде всего, при травмах. Заранее подготовить самые необходимые вещи (предметы) и хранить их в месте, известном всем членам семьи (радиоприемник на батарейках; запас консервированных продуктов и питьевой воды из расчета на 3-5 суток; аптечка первой медицинской помощи с двойным запасом перевязочных материалов и с набором лекарств, необходимых хронически больным членам семьи; переносной электрический фонарь, ведро с пе­ком, огнетушитель автомобильный - следует заранее научиться им пользоваться.

· Документы хранить в одном легкодоступном месте, желательно недалеко от входа в квартиру. Там же целесообразно иметь рюкзак, в котором должны быть фонарь, топорик (секач), спички, немного еды, аптечка, свечи, запасная одежда и обувь (по сезону) в расчете на всю семью. При наличии гаража или садового домика их можно использовать как убежища в первые дни после землетрясения. Там можно хранить запас продовольствия и одежды. При этом надо учитывать, что менее надежными являются постройки, расположенные на оползневых склонах.

· Шкафы, этажерки, стеллажи, полки прочно прикрепить к стенам, к полу; мебель разместить так, чтобы она не могла упасть на спальные места, перекрыть выходы из комнат, загородить двери; тяжелые вещи, лежащие на полках или на мебели (включая антресоли), прочно закрепить или переместить вниз.

· Не устраивать полки над спальными местами, входными дверями, плитами, раковинами, унитазами; закрыть переднюю часть полок с посудой, надежно закрепить люстры и люминесцентные светильники.

· Не загромождать вещами вход в квартиру, коридоры и лестничные площадки.

· Емкости с легковоспламеняющимися веществами и едкими жидкостями хранить надежно закупоренными так, чтобы они не могли упасть и разбиться при колебании здания.

· Периодически проводить тренировки быстрой эвакуации, продумать, как повысить безопасность детей, пожилых людей, инвалидов и больных.

Массовые разрушения жилых и общественных зданий на значительной территории, повреждение дорог, железнодорожных путей, выход из строя объектов энергообеспечения и коммунальных сетей, телефонной связи, гибель большого количества людей и животных - все это требует решения сложных взаимосвязанных задач по ликвидации последствий землетрясений.

В ходе ликвидации последствий любого землетрясения можно выделить два основных этапа:

Этап 1. В первые часы и сутки после землетрясения не­обходимо в кратчайшие сроки взять под жесткий контроль и организовать целенаправленную деятельность всех местных и прибывающих сил и средств для спасения людей, оказавшихся в завалах разрушенных зданий и сооружений. Для этого нужно восстановить нарушенное управление, оценить обстановку и масштабы последствий землетрясения, усилить комендантскую службу и охрану общественного порядка, изолировать от посторонних пострадавшие районы, создать группировку сил и организовать поисково-спасательные и другие неотложные работы, обеспечить минимально необ­ходимые условия жизни людей в районе бедствия.

Практически стоит задача создать новую систему управления, способную организовать деятельность всех структурных звеньев общественного и хозяйственного управления, задействованных для ликвидации последствий землетрясения. При этом главным условием является проведение всего комплекса работ в возможно короткие сроки.

При спасательных и других неотложных работах, а также при работах по обеспечению жизнедеятельности населения основными задачами являются:

По спасательным работам:

· определение объемов и степени повреждений различных зданий и сооружений, выявление мест наибольшего скопления пострадавших в завалах и рассредоточение для их спасения основных сил и средств; о поиск и извлечение пострадавших из-под завалов, оказание им первой медицинской и первой врачебной помощи с последующей эвакуацией в стационарные лечебные учреждения; о извлечение из-под завалов погибших людей, их регистрация и организация захоронения.

По другим неотложным работам:

· расчистка подъездных путей и площадок для расстановки прибывающей техники, устройство проездов и поддержание в исправном состоянии маршрутов движения; восстановление разрушенных желез­нодорожных магистралей; о локализация и тушение пожаров, ликвидация аварий и их последствий на коммунально-энергетических и технологических сетях, угрожающих жизни пострадавших и затрудняющих спасательные работы; о обрушение конструкций зданий и сооружений, угрожающих обвалом, крепление неустойчивых частей завалов от перемещений в процессе работ;

· восстановление стационарных электросетей для освещения основных транспортных магистралей городов и населенных пунктов, а также объектов, на которых проводились спасательные работы; о организация комендантской службы и охраны общественного порядка (ООП) в целях упорядочения движения транспорта на объектах работ и прилегающих автомагистралях; о осуществление контроля за применением техники в соответствии с ее предназначением, а также пресечение случаев воровства и мародерства;

· учет и передача в соответствующие органы обнаруженных в ходе работ ценностей (денег, облигаций, ювелирных изделий и т. д.); организация комплекса противоэпидемических и санитарно-гигиенических мероприятий в целях предупреждения заболеваний среди личного состава, привлекаемого для проведения спасательных работ; организация захоронения животных, погибших во время землетрясения.

По материальному и техническому обеспечению:

· укомплектование формирований спасательных служб автокранами, экскаваторами, погрузчиками, бульдозерами, автосамосвалами и средствами малой механизации;

· техническое обслуживание и текущий ремонт техники, обеспечение ее горюче-смазочными материалами; о своевременное обеспечение личного состава спасательных служб сменным обмундированием, средствами индивидуальной защиты, необходимым инструментами и оборудованием; о обеспечение жизнедеятельности личного состава спасательных служб, размещение, организация питания, банно-прачечного и медицинского обслуживания, работы почтовой связи.

По обеспечению жизнедеятельности населения пострадавших городов и населенных пунктов:

· временное отселение из пострадавших районов нетрудоспособного населения, в первую очередь женщин и детей, в непострадавшие районы и области;

· обеспечение пострадавшего населения теплыми вещами и предметами первой необходимости, организация питания и обеспечение во­дой, временное размещение в палатках, домиках и сохранившихся сейсмоустойчивых зданиях; профилактика и предупреждение возникновения инфекционных заболеваний среди населения, своевременное выявление и изоляция заболевших;

· проведение комплекса мероприятий по ликвидации психологических травм и шоковых состояний, организация справочно-информационной службы о местах и времени захоронения погибших, размещении пострадавших в лечебных учреждениях и местах расселения эвакуированного населения.

Этап 2. При ликвидации последствий землетрясений развертываются работы по экономическому и социальному восстановлению пострадавших районов: возобновление производственной деятельности промышленности и объектов инфраструктуры, обеспечение жизнедеятельности населения в пострадавших районах.

Параллельно со строительно-монтажными работами выполняются следующие работы:

· разборка завалов и вывоз поврежденных конструкций и строительного мусора в отвалы;

· санитарная очистка городов и населенных пунктов; доставка вагон-домиков со станций разгрузки в назначенные места;

· сбор и сдача металлолома;

· другие работы в интересах обеспечения жизнедеятельности населения.

По заключению ученых, сейсмическая активность Земли в ближайшие годы будет нарастать.

Вулканы

Вулканическая деятельность возникает в результате постоянных активных процессов, происходящих в глубинах Земли. Вулканические извержения угрожают тем жителям Земли, которым грозят и землетрясения. Около 200 млн человек проживают в опасной близости к действующим вулканам.

Вулканы (по имени бога огня Вулкана) представляют геологические образования, возникающие над каналами и трещинами в земной коре, по которым извергается на земную поверхность магма. Обычно вулканы - это отдельные горы, сложенные из продуктов извержений. Магматические очаги находятся в мантии на глубине 50-70 км или в глубине земной коры.

К наиболее опасным явлениям, сопровождающим извержения вулканов, относятся лавовые потоки, выпадения тефры, вулканические грязевые потоки, вулканические наводнения, палящая вулканическая туча и вулканические газы.

Лавовые потоки состоят из лавы - расплава горных пород, разогретых до 900-1000°С. В зависимости от состава горных пород лава может быть жидкой или вязкой. При извержении вулкана лава изливается из трещин в склоне вулкана либо переливается через край кратера вулкана и стекает к его подножию. Лавовый поток передвигается тем быстрее, чем мощнее сам лавовый поток, больше уклон конуса вулкана и жиже лава. Диапазон скоростей лавовых потоков достаточно широк: от нескольких сантиметров в час до не­скольких десятков километров в час. В отдельных, наиболее опасных случаях скорость лавовых потоков может достигать 100 км в час. Чаще всего она не превышает 1 км в час.

Лавовые потоки при смертоносных температурах представляют опасность лишь тогда, когда на их пути оказываются населенные пункты. Однако и в этом случае остается время на эвакуацию населения и проведение различных защитных мероприятий.

Тефра состоит из обломков застывшей лавы, более древних подповерхностных горных пород и раздробленного вулканического материала, образующего конус вулкана. Тефра образуется при вулканическом взрыве, сопровождающем извержение вулкана. Наиболее крупные обломки тефры называются вулканическими бомбами.

Вулканические бомбы отлетают на несколько километров от кратера. Выпадение тефры приводит к уничтожению животных, растений, возможна гибель людей. Вероятность выпадения тефры на населенный пункт в значительной степени зависит от направления ветра.

Мощные слои пепла на склонах вулкана находятся в неустойчивом положении. Когда на них ложатся новые порции пепла, они соскальзывают со склона вулкана. В некоторых случаях пепел пропитывается водой, в результате чего образуются вулканические грязевые потоки. Скорость грязевых потоков может достигать нескольких десятков километров в час. Такие потоки обладают значительной плотностью и мо­гут во время своего движения увлекать крупные глыбы, что увеличивает их опасность. Из-за большой скорости движения грязевых потоков затрудняются проведение спасательных работ и эвакуации населения.

При таянии ледников во время вулканических извержений может сразу образоваться огромное количество воды, что приводит к вулканическим наводнениям . Точно подсчитать, какое количество воды спустил ледник, трудно, хотя это весьма важно для планирования мер защиты от вулканического наводнения. Это объясняется тем, что ледники имеют много внутренних полостей, заполненных водой, которая добавляется к воде, возникающей при таянии ледников во время вулканического извержения.

Палящая вулканическая туча представляет собой смесь раскаленных газов и тефры. Поражающее действие палящей тучи обусловлено образующейся при ее возникновении ударной волной (ветром у краев тучи), распространяющейся со скоростью до 40 км/ч, и валом жара (до 1000°С). Кроме того, сама туча может передвигаться с большой скоростью (90-200 км/ч).

Вулканическое извержение всегда сопровождается выделением вулканических газов и смеси с водяными парами.

Вулканические газы представляют собой смесь сернистого и серного окислов, сероводорода, хлористоводородной и фтористоводородной кислот в газообразном состоянии, а также углекислого и угарного газов в больших концентрациях, смертельно опасных для человека. Выделение вулканиче­ских газов может продолжаться десятки миллионов лет даже после того, как вулкан перестал выбрасывать лаву и пепел.

В 1983 г. по инициативе ЮНЕСКО была разработана классификация, согласно которой выделено 89 вулканов с высокой степенью риска. В настоящее время не существует единой методики оценки вулканической опасности. Наиболее полное исследование по этому вопросу, имеющее более чем двухсотлетнюю историю, изложено в руководстве по составлению карты вулканической опасности геологической службы Японии. Из него следует, что оценка вулканической опасности индивидуальна не только для каждого вулканического района, но и для отдельного вулкана.

В зависимости от положения вулканов по отношению к населенным пунктам - расстояния, рельефа местности, а также от наличия на вулканах или рядом с ними ледников, от толщины снежного покрова, времени года, когда может про­изойти извержение, и метеорологических условий каждый из действующих вулканов Курило-Камчатского региона представляет определенную степень опасности. Различия в факторах опасности усугубляются индивидуальными особенностями вулканов.

Вулканы подразделяются на действующие, уснувшие и потухшие .

До сих пор среди ученых нет единого мнения по поводу определения действующего вулкана. Многие потухшие вулканы могут стать действующими, как это произошло с вулканами Мон-Пеле, Везувием или Безымянным, который неожиданно начал извергаться в 1955 г., а до этого времени молчал больше тысячи лет.

Извержения вулканов бывают длительными и крат­ковременными. Продукты извержения (газообразные, жидкие, твердые) выбрасываются на высоту 1-5 км и переносятся на большие расстояния. Концентрация вулканического пепла бывает настолько большой, что возникает темнота, подобная ночной. Объем излившейся лавы достигает десятков кубических километров. Извержение вулкана Везу­вия полностью уничтожило Помпею. Толщина слоя вулканического пепла, покрывшего этот город, достигла 8 м.

Существует три главных типа извержений: эффузивный (гавайский), смешанный (стромболианский), экструзивный (купольный).

Замечена взаимозависимость вулканической деятельностью и землетрясений. Сейсмические толчки, как правило, обозначают начало извержения. При этом опасность представляют лавовые фонтаны, потоки горячей лавы, раскаленные газы. Взрывы вулканов могут инициировать оползни, обвалы, лавины, а на морях и в океанах - цунами.

Для обоснованной картины вулканической опасности необходимы фундаментальные работы: оценка масштаба вулканических извержений в доисторическое и историческое время (анализ катастрофических извержений в прошлом); анализ катастрофических извержений аналогичных вулка­нов в других частях Земли; оценка масштаба современных извержений, их максимальной мощности. Только изучив тенденцию в развитии вулкана, можно определить степень его опасности в настоящее время.

Для прогноза места и времени вулканических извержений требуется мониторинг с применением инструментальных геофизических, геохимических и визуальных методов.

В Курило-Камчатском регионе наиболее опасны вулканы, располагающиеся в непосредственной близости от крупных населенных пунктов: г. Петропавловска-Камчатского и г. Ели- ово (Авачинская группа вулканов); г. Ключи (Ключевская группа вулканов и вулкан Шивелуч); г. Северо-Курильск, Северные Курилы - вулкан Эбеко.

Районирование областей вулканической опасности предполагает выделение районов разной степени опасности от последствий вулканических извержений: вулканических бомб, выпадения тефры, лавовых потоков, пирокластических потоков (палящих туч), обломочных лавин и обрушений склонов вулканов, направленных взрывов, грязевых потоков, вулканических землетрясений, вулканических газов, заражения питьевой воды. Необходимо также выделение районов, наименее опасных от вулканических извержений.

В результате вулканического районирования могут быть построены несколько типов карт вулканической опасности:

· вулканологическая карта, отображающая физические эффекты исто­рических и доисторических вулканических извержений;

· информационная карта для нужд администрации населенных пунктов;

· информационная карта для населения.


Похожая информация.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Прогнозирование землетрясений

Введение

землетрясение географический прогнозирование катастрофа

С момента появления первых землетрясений человечество преследует неукротимое желание возможности предсказания и прогнозирования этих явлений. На протяжении многих столетий данная проблема оставалась нерешенной. Первоначально организовывались группы исследователей, которые занимались изучением не только катастрофических последствий землетрясений, но и наблюдали предшествующие природные изменения. Тем не менее, попытки ученых далеко не всегда увенчивались успехом.

Суммарное количество жертв землетрясений на Земле за последние 500 лет составило около 5 млн. человек, почти половина из них приходится на Китай. Землетрясения составляют 13% от общего числа природных катастроф и занимают 3-е место среди стихийных бедствий, отдавая первенство тропическим штормам и наводнениям.

На сегодняшний день актуальность вопросов прогнозирования землетрясений не вызывает сомнений, поскольку именно точный прогноз помогает спасти жизни людей. Сильные землетрясения носят катастрофический характер, уступая по числу жертв только тайфунам и значительно (в десятки раз) опережая извержения вулканов. Материальный ущерб одного разрушительного землетрясения может составлять сотни миллионов долларов, в связи с этим успех прогнозирования приобретает огромную важность.

Целью курсовой работы является выявление наиболее эффективных методов прогнозирования землетрясений. Для достижения данной цели в ходе исследования были решены следующие задачи:

1. дана общая характеристика понятию землетрясения;

2. исследованы вопросы географического распространения землетрясений;

3. изучены наиболее актуальные вопросы и проблемы прогнозирования землетрясений;

4. совершен экскурс в историю предсказаний землетрясений;

5. рассмотрены различные виды прогнозирования.

Теоретическая и практическая значимость данной работы состоит в том, что рассматриваемые аспекты прогнозирования землетрясений позволят осуществлять наиболее эффективный анализ причин и времени их возникновения, а также использовать возможные пути избежания катастрофических последствий данного стихийного бедствия.

1 . Общая характеристика землетрясений

Землетрясения представляют собой колебания Земли, порожденные внезапными изменениями в состоянии недр планеты. Эти колебания по своей сути являются упругими волнами, которые распространяются с высокой скоростью в толще горных пород. Сильнейшие землетрясения иногда ощущаются даже на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли - эпицентром землетрясения. Очаги большей части землетрясений расположены в земной коре на глубинах не более 16 км, но в отдельных районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь некоторые из них ощущаются человеком.

Первые упоминания о землетрясениях можно обнаружить в Библии, в трактатах античных ученых - Геродота, Плиния и Ливия, а также в древних китайских и японских письменных источниках. До XIX в. большинство сообщений о землетрясениях содержало описания, красочно приукрашенные суевериями, и гипотезы, основанные на скудных и недостоверных сведениях.

Немногие природные явления способны причинять разрушения такого масштаба, как землетрясения. На протяжении столетий они были причиной гибели миллионов людей и бесчисленных разрушений. Хотя с древнейших времён землетрясения вызывали ужас и суеверный страх, до возникновения в начале ХХ столетия науки сейсмологии мало что было понято о них.

Начало регулярным описаниям землетрясений в 1840 г. положил А. Перри (Франция). В 1850-х годах Р. Малле (Ирландия) собрал большой каталог землетрясений, а его детальный отчет о землетрясении в Неаполе в 1857 г. стал одним из первых строго научных описаний сильных землетрясений. Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений детально изучены.

По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.

Тектонические землетрясения возникают в результате непредвиденного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при конкретных температурах и давлении). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 суммарная протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение - 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

На поверхности Земли землетрясения проявляются сотрясением и иногда смещением земли. Когда эпицентр большого землетрясения расположен на каком-то расстоянии от берега, в открытом море, морское дно иногда смещается так, что появляются цунами. Сотрясение при землетрясениях может также вызвать оползни и иногда вулканическую деятельность.

Вулканические землетрясения происходят в результате резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Причиной техногенных землетрясений могут явиться подземные ядерные испытания, заполнение водохранилищ, добыча нефти и газа путем нагнетания жидкости в скважины, взрывные работы при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Большинство тектонических землетрясений зарождаются на глубине не более десятков километров. В зонах субдукции (где одна тектоническая плита пододвигается под другую), где старшая и более холодная океанская кора спускается ниже другой тектонической плиты, землетрясения могут происходить на значительно больших глубинах (до семисот километров). Эти сейсмически активные области субдукции известны как зоны Wadati-Benioff. Это - землетрясения, которые происходят на глубине, на которой пододвинутая литосфера больше не должна быть ломкой из-за высокой температуры и давления. Возможный механизм образования землетрясений с глубоким центром - образование разрывов, вызванное оливином, подвергающимся фазовому переходу в структуру шпинели.

Магнитуда землетрясений обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф. Рихтера, предложившего ее в 1935 г.). Магнитуда землетрясения - безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения.

Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:

2 - самые слабые ощущаемые толчки;

4"/2 - самые слабые толчки, приводящие к небольшим разрушениям;

6 - умеренные разрушения;

8"/2 - самые сильные из известных землетрясений.

Интенсивность землетрясений оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.

На Земле в год происходит примерно одно катастрофическое землетрясение, около 100 разрушительных и около 1 млн. ощутимых в населенной местности (по Б. Гутенбергу и Ч. Рихтеру).

Причины землетрясений окончательно не ясны. Землетрясения зарождаются в различных частях земной коры и в подкоровом слое, в условиях твердой среды. Большинство ученых считает, что причины землетрясений - смещения на глубине в веществе Земли, связанные или с моментальным сдвигом, со скольжением, или с кручением вещества. Это доказывается тем, что гипоцентры землетрясений расположены вдоль плоскостей ранее существовавших разрывов земной коры (разлом Сан-Андреас, зона на юге Крыма и др.). Вдоль берегов Охотского моря также имеется такая зона. Плоскости этих разломов обычно наклонены в сторону суши. Области суши по ним движутся в сторону моря. Эти движения вызывают напряжения, с которыми связываются повторные разрывы, которые и вызывают землетрясения.

Гипотеза разрывного происхождения землетрясений доказывается тем, что в целом ряде землетрясений поперечные волны, образующиеся при сдвигах, оказываются более интенсивными, чем волны продольные. В случае простого сжатия и растяжения вещества без разрыва продольные волны были бы более сильными.

Выяснению причин землетрясений способствует анализ сейсмограмм. Разрабатываемая аппаратура позволяет раздельно изучать продольные и поперечные волны, что очень важно.

2 . Географическое распространение и прогнозирование землетрясений

Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских островов на восток до Юго-Восточной Азии. Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские острова до Камчатки и затем через Японские острова, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.

Вторая зона от Азорских островов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи. Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта. Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан, в Северной Америке долина р. Св. Лаврентия и северо-восток США. Иногда в районах, которые принято считать неактивными, происходят сильные землетрясения, как, например, в Чарльстоне (шт. Южная Каролина) в 1886 г.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских островов, а в Средиземноморской зоне - к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды. Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники).

Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 г. работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений. Задача прогноза землетрясений, ведущегося на основе наблюдений за предвестниками (предсказание не только места, но, самое главное, времени сейсмического события), далека от своего решения, т.к. ни один из предвестников нельзя считать надежным.

Известны единичные случаи исключительно удачного своевременного прогноза, например, в 1975 в Китае очень точно было предсказано землетрясение с магнитудой 7,3. В сейсмоопасных районах важную роль играет возведение сейсмостойких сооружений.

Деление территории по степени потенциальной сейсмической опасности входит в задачу сейсмического районирования. Оно основано на использовании исторических данных (о повторяемости сейсмических событий, их силе) и инструментальных наблюдений за землетрясениями, геолого-географическом картировании и сведениях о движении земной коры.

Районирование территории связано и с проблемой страхования от землетрясений.

В 1950 году ученые из бывшего СССР начали свою программу по прогнозу землетрясений. В ходе исследований было получено множество интересных данных. Но предсказать реальной угрозы не удалось. Первая самостоятельная попытка советских ученых провалилась. После неудачи Советского Союза очередная попытка была предпринята Китаем. Китайцам удалось достичь некоторых результатов, однако землетрясение 1976 года не далеко от Пекина спрогнозировать так и не удалось.

Мировая общественность пришла в уныние после двух неудач подряд. Сейсмологи всего мира продолжали неустанно работать над решением проблемы. Им удавалось несколько раз достаточно точно предсказать несколько землетрясений, но основное количество трагедий никаким предсказаниям не поддавалось.

Сегодня различают несколько видов прогнозов, которые можно давать относительно землетрясений: долгосрочный прогноз, среднесрочный прогноз и краткосрочный прогноз. Меньше всего споров вызывает, конечно, долгосрочный прогноз. Во время этого прогноза изучаются изменения напряжения в литосфере, сейсмическая прозрачность литосферы. Такие прогнозы составляются сроком от нескольких месяцев до нескольких лет.

Среднесрочный прогноз позволяет предсказать землетрясение за несколько месяцев до него. В основе такого прогноза лежат наблюдения за геофизическими полями. Эти прогнозы не очень успешны, но в общем потоке событий даже такие скромные данные представляют некую ценность.

И, наконец, краткосрочный прогноз. К этими прогнозам предъявляют большие требования. Ведь от точности таких прогнозов зависят тысячи человеческих жизней. Приведем в пример два китайских землетрясения 1975 и 1976 годов. В первом случае люди были эвакуированы за два часа, во втором - погибли сотни тысяч, так как ученые побоялись ложной тревоги.

Несмотря на многочисленные неудачи исследователей в данной области на сегодняшний день вполне возможен достаточно точный прогноз землетрясений - предсказание места и времени их возникновения, а также интенсивность в эпицентре. В качестве примера укажем прогноз хайченского землетрясения 4 февраля 1975 г. (Китай, провинция Ляонин).

Официальное оповещение о предстоящем сильном землетрясении было сделано за 9 часов до того, как оно началось. Разразившееся землетрясение действительно оказалось очень сильным: оно разрушило до половины зданий в районе с населением более миллиона человек. Однако благодаря своевременно принятым мерам число жертв было сравнительно небольшим - погибло 300 человек.

Тем не менее, прошло примерно полтора года после упомянутого хайченского землетрясения, и в том же Китае произошло ужасающее по числу жертв таншаньское землетрясение (27 июля 1976 г.): оно унесло более 600 тысяч человеческих жизней.

В целом, возможность предсказания землетрясений основывается, как правило, на наблюдении состояния подземных пород.

Возникновение значительных механических напряжений заметно изменяет свойства пород - эти свойства становятся необычными, или, как говорят, аномальными. Наблюдаются аномалии разного рода: электрические, магнитные, упругие и т.д. Так, например, под действием сильных механических нагрузок в веществе может возникать электрическое поле (этот физический эффект называют пьезоэлектрическим); следовательно электризация пород может рассматриваться как предвестник землетрясения. В напряженных породах упругие волны распространяются иначе, чем в ненапряженных. Напряжения влияют также на циркуляцию подземных вод, на характер заполнения водами трещин и скважин.

Отдельно следует отметить химический метод прогнозирования землетрясений. Оказалось, что при формировании очага землетрясения и нарастании механических напряжений резко увеличивается концентрация в подземных водах гелия и ряда других химических элементов (например, неона, аргона, криптона). Растет их концентрация и в газовых потоках.

Таким образом, производя химический анализ газа или воды в специально создаваемых скважинах, можно выявить назревающее землетрясение.

В качестве особого предвестника землетрясения можно рассматривать необычное поведение многих животных и птиц. Следует отметить, что спешное предсказание землетрясения в Китае в1975 г. в немалой степени основывалось на народных приметах, в частности на сообщениях о необычном поведении домашних животных. В настоящее время зарегистрировано около 70 видов животных, которые могут считаться прогнозистами землетрясений интенсивностью от 4 баллов и выше.

Однако научного обоснования чувствительности животных на сегодняшний день не найдено. Можно предполагать, что животные реагируют на возникающие перед землетрясение звуки (в том числе инфразвуки и ультразвуки), изменения электрического и магнитного полей, выделения газов из почвы и т.д. В настоящее время исследование аномального поведения животных перед началом землетрясения все более привлекает внимание сейсмологов всего мира.

Одним из методов предсказания землетрясений является изучение небесных изменений. Теория, которая в научных кругах носит название «Литосферно-атмосферно-ионосферный соединительный механизм» говорит о том, что сразу перед землетрясением из напряженного разлома вырывается много газа, особенно бесцветного, лишенного запаха радона. Когда радон попадает в верхние слои атмосферы - ионосферу - он забирает у молекул воздуха электроны, разделяя их на отрицательно заряженые частицы (свободные электроны) и позитивно заряженные. Эти заряженные частицы, ионы, вступают в реакцию с конденсированной водой, в результате чего выделяется тепло. Это тепло и могут зафиксировать ученые с помощью инфракрасного излучения.

Используя данные спутников, Димитар Узунов (Dimitar Ouzounov), профессор естественных наук в университете Чапмана и один из авторов работы, вместе с коллегами изучил процессы, имевшие место в атмосфере за несколько дней до японского землетрясения. Исследователи обнаружили, что концентрация электронов в ионосфере заметно повысилась за несколько дней до катастрофы.

Исследователи проанализировали информацию о более чем 100 землетрясениях в Азии и Тайване и нашли похожие корреляции для землетрясений магнитудой более 5,5 баллов, эпицентр которых залегал на глубине менее 50 км. Команда теперь пытается привлечь коллег из Японии и других стран мира для масштабного мониторинга атмосферы.

Тем не менее, успех прогнозирования землетрясений еще не гарантирован. Никто еще не предсказывал катастрофу, основываясь на данных об атмосфере, а множество других способов вычислить день землетрясения, от наблюдений за поведением животных до фиксирования факта, что подземные воды потекли в другую сторону, дают абсолютно случайные результаты. Поэтому ученое сообщество призывает без лишней эмоциональности относиться к потенциалу нового метода, пока его результативность не будет доказана.

Несмотря на скептизим коллег, команда г-на Узунова планирует в ближайшее время собрать ученых, занимающихся проблемами Земли, и исследователей атмосферы на конференцию, в ходе которой обсудить обнаруженные изменения в ионосфере.

Связь между дождями и слабыми землетрясениями установили Себастьян Хайнцл (Sebastian Hainzl) из университета Потсдама (Universitat Potsdam), Тони Крафт (Toni Kraft) из университета Людвига-Максимилиана в Мюнхене (Ludwig-Maximilians-Universitat Munchen) и их коллеги.

Ливневые воды, проникающие в трещины и поры породы, могут срабатывать как спусковой крючок, вызывая небольшое землетрясение в случае, если напряжение в разломе почти достигло предела. Эту идею учёные обсуждали давно, но никто ещё не проверял такую связь на практике.

Оказалось, что для провоцирования землетрясений воды требуется гораздо меньше, чем специалисты полагали ранее. Это установили наблюдения за 1775-метровым пиком Хохстауфен в Баварии, местом, где ежегодно случается тысяча слабых землетрясений. Учёные выяснили, что летом, когда шло больше дождей, сейсмическая активность была выше. Авторы работы поясняют, что вода, проникающая под гору с поверхности, увеличивает давление в порах, так, что породы, находящиеся на грани скольжения, резко сдвигаются со своего места.

Для проверки гипотезы учёные начали фиксировать ежедневное количество осадков и прогнозировать на этой основе количество слабых землетрясений. Прогноз оказался точным. В частности, после сильных затяжных дождей сейсмическая активность в данной местности выросла в 20 раз - некоторое время после этих ливней исследователи ежедневно фиксировали по 40 крошечных сотрясений вместо обычных 1-2.

Ранее геологи полагали, что только обширные водные потоки могут хоть как-то влиять на сейсмическую активность того или иного региона - например, потоки, возникающие при интенсивном таянии очень больших количеств снега. Также было хорошо известно действие массивных водохранилищ: в 1967 году в Индии заполнение нового большого водохранилища вызвало 7-балльное землетрясение, убившее 200 человек.

Германские специалисты полагают, что найденная взаимосвязь между уровнем осадков и сейсмической активностью справедлива и для тех регионов, где землетрясения имеют несравненно большую силу. Правда, геофизик Марк Зобак (Mark Zoback) из университета Стэнфорда (Stanford University), прокомментировавший работу германских коллег, отметил, что в случае с глубоко залегающими очагами землетрясений требуется несколько лет, чтобы вода проникла с поверхности. А это делает связь между количеством осадков и частотой землетрясений в таких районах трудно обнаруживаемой.

В 2003 году был открыт принципиально новый физический эффект трехмерного изменения гравитационного поля перед сильными землетрясениями, на огромных расстояниях от эпицентра землетрясений (от 1000 км до 10000 км). Этот эффект лег в основу принципиально нового физического инструмента - торсионного детектора трехмерных гравитационных вариаций, на который был выдан патент. На основе указанного детектора была разработана и изготовлена станция прогнозирования ATROPATENA, автоматически и автономно регистрирующая трехмерные изменения гравитационного поля и передающая эту информацию в Центральную Базу Данных, размещенную в США. С 2007 года, после начала работы первой станции ATROPATENA-AZ, краткосрочные прогнозы землетрясений регулярно поступали в Президиум МАН (Международная Академия Наук (Здоровье и Экология)), Австрия, Инсбрук), в Пакистанскую Академию Наук (Исламабад, Пакистан) и Университет Гаджа Мада (Джокьякарта, Индонезия).

В 2008 году в рамках Международной программы - Соглашения о сотрудничестве в области прогнозирования, подписанной с правительствами ряда стран и международными организациями, была создана Глобальная сеть прогнозирования землетрясений (GNFE).

Основной целью GNFE является краткосрочное прогнозирование землетрясений и оперативное оповещение стран входящих в состав Глобальной Сети о прогнозируемых сильных толчках.

Странами-участницами (полноправные члены - владельцы станций ATROPATENA) и партнерами GNFE (ассоциативные члены - имеющие соглашения о сотрудничестве) являются Англия, Австрия, США, Индонезия, Азербайджан, Пакистан, Германия, Турция, Казахстан, Узбекистан.

В 2009 году Глобальная Сеть Прогнозирования Землетрясений начала полноценно функционировать в режиме краткосрочного прогнозирования землетрясений и оперативной передачи этой информации странам-участникам Глобальной Сети. Этот факт был широко освещен в российской и международной печати. Наряду со странами - участвующими в работе Глобальной Сети (Австрия, США, Индонезия, Пакистан, Азербайджан) в качестве ассоциативных партнеров выступили организации ряда стран: Турция (SETAC, VisioTek), Казахстан (НПК Прогноз), Узбекистан (Институт Сейсмологии).

Заключение

В ходе написания курсовой работы мною был сделан вывод, что на сегодняшний день немалый опыт в прогнозировании землетрясений накоплен в России, в США и ряде других государств. Тем не менее, было бы неправильно считать, что вопрос о предсказании землетрясений полностью решен.

Отношение ряда ученых к проблеме прогнозирования землетрясений весьма неоднозначно. В настоящее время мировое научное сообщество, разочарованное многолетним «застоем» в развитии новых технологий прогнозирования землетрясений, разделилось на «скептиков» и «оптимистов». Основная позиция «скептиков» - невозможно краткосрочно прогнозировать землетрясения, так как многолетние исследования в этой области не увенчались успехом. Позиция же «оптимистов» основывается на диалектическом понимании эволюционного научного развития, в котором, не возможное «вчера», становится очевидным «сегодня», благодаря открытию новых законов природы, новым знаниям и технологиям.

Нет сомнений, что социальные и экономические проблемы, которые возникают в результате предупреждения, весьма серьезны, но что произойдет в действительности в большей степени, зависит от содержания предупреждения. В настоящее время представляется вероятным, что сейсмологам вначале следует делать заблаговременные предупреждения, возможно, на несколько лет вперед, а затем постепенно уточнять время, место и возможную магнитуду ожидаемого землетрясения по мере его приближения. С другой стороны может возникнуть повышенный спрос на лагерное оборудование, средства борьбы с огнем, товары первой необходимости, за чем последуют их нехватка и повышение цен.

Таким образом, следует четко различать предсказания, источник которого может заслуживать или не заслуживать доверия, и предупреждения, которые должны носить характер официального указания о необходимости осуществления тех или иных практических мероприятий.

Каковы бы ни были перспективы прогноза или контроля, очевидно, что число жертв при землетрясениях и экономические потери могут быть существенно уменьшены, если специалисты направят свою изобретательность и труд в первую очередь на разработку более надежных строительных нормативов и создание более совершенных строительных конструкций.

Список использованной литературы

1. Безопасность жизнедеятельности. Сычев Ю.Н. Учебно-методический комплекс. - М.: «ЕАОИ», 2008. - 311 с.

2. Никонов А.А. Землетрясения. - М.: «Знание», 1984. - 192 с.

3. Общая геоморфология. Рычагов Г.И. 3-е изд., перераб. и доп. - М.: Изд-во Моск. ун-та: Наука, 2006. - 416 с.

4. Поляков С.В. Последствия сильных землетрясений. - М.: «Стройиздат», 1978. - 311 с.

5. Сборник научных статей / Под ред. Э.В. Велик, Т.И. Водолазская, М.П. Ильяшенко. - М.: «БАО-ПРЕСС», 2004. - 624 с.

6. Тарасов Л.В. Физика в природе. - М.: «Просвещение», 1988. - 352 с.

7. Хаин В.Е., Э.Н. Халилов. Цикличность геодинамических процессов: Её возможная природа. - М.: «Научный Мир», 2009. - 520 с.

8. Халилов Э.Н. Гравитационные волны и геодинамика. / Под редакцией Академика В.Е. Хаина. - Москва-Баку: «С-Центр», 2004. - 330 с.

9. Эйби Дж.А. Землетрясения. - М.: «Недра», 1982. - 264 с.

Размещено на Allbest.ru

...

Подобные документы

    Исследование явления землетрясения и изучение методов обеспечения сейсмостойкости сооружений. Прогнозирование землетрясений по состоянию земной коры и атмосферы. Необходимость большого числа сейсмографов и соответствующих устройств для обработки данных.

    презентация , добавлен 13.03.2019

    Изучение основных причин и сущности землетрясений - быстрых смещений, колебаний земной поверхности в результате подземных толчков. Особенности глубокофокусных землетрясений. Характеристика приемов и приборов для обнаружения, регистрации сейсмических волн.

    реферат , добавлен 04.06.2010

    Исследование понятий очага и эпицентра землетрясения. Классификация землетрясений по причинам их возникновения. Изучение шкалы оценки магнитуд. Описания крупнейших катастрофических землетрясений ХХ века. Последствия землетрясений для городов и человека.

    презентация , добавлен 22.05.2013

    Определение землетрясений как мощных динамических воздействий, имеющих тектоническую природу. Поведение грунтов при землетрясениях и причины разрушений. Основные типы сейсмогенерирующих зон. Составление карт сейсмической и вулканической активности.

    реферат , добавлен 09.03.2012

    Анализ связи естественного импульсного электромагнитного излучения и глобальной сейсмической активности по наблюдениям вдали от локальных источников возмущения. Изучение возмущений в ионосфере, возникающих за несколько дней до сильных землетрясений.

    курсовая работа , добавлен 14.05.2012

    Исторические сведения и результаты мониторинга сейсмических событий на земном шаре на протяжении второй половины ХХ в. Основные понятия и характеристики землетрясений. Методы оценки силы (интенсивности) землетрясений. Типы геологических разломов.

    реферат , добавлен 05.06.2011

    Что происходит при сильных землетрясениях. Типы сейсмических волн, возникающих при землетрясениях. Проскальзывание по разломам; глинка трения. Попытки предсказания землетрясений. Особенности пространственного распределения очагов землетрясений.

    курсовая работа , добавлен 14.03.2012

    Подходы и особенности разработки методики определения уточненной интенсивности землетрясений для оценки устойчивости бортов заданных карьеров на территории России. Исследование и анализ примеров данных вычислений для Бачатского и Черниговского разрезов.

    статья , добавлен 16.12.2013

    Теория землетрясений как геофизического процесса, ранние и современные объяснения их причин. Механизм землетрясений, их классификация, основные понятия: очаг, гипоцентр, эпицентр, магнитуда, балл. Перспективы предсказаний, трудности и проблемы прогноза.

    реферат , добавлен 07.03.2011

    Аэрокосмические методы исследования природной среды, представление о линеаментах и их изучение, анализ картографических материалов. Прогнозирования тектонически-опасных территорий и значение очагов землетрясений, искусственные взрывные землетрясения.

Доктор геолого-минералогических наук Николай Короновский, кандидат геолого-минералогических наук Альфред Наймарк.

Землетрясение 12 января 2010 года, Порт-о-Пренс, столица Республики Гаити. Разрушенные президентский дворец и городские кварталы. Общее число погибших - 220 тысяч.

Наука и жизнь // Иллюстрации

Сейсмическая опасность и прогноз землетрясений в сопоставлении с прогнозами климата и погоды (по В. И. Уломову, http://seismos-u.ifz.ru).

Землетрясение в г. Ван (Турция), 2011 год.

Рис. 1. Предвестниковые и постсейсмические аномалии на графиках агрегированных сигналов, Китай (по А. Любушину, 2007 год).

Рис. 2. Аномалии перед землетрясениями в Японии 25 сентября 2003 года и 11 марта 2011-го, ограничены вертикальными линиями (по А. Любушину, 2011 год).

Не проходит и года, чтобы где-то не случилось катастрофическое землетрясение с тотальными разрушениями и человеческими жертвами, количество которых может достигать десятков и сотен тысяч. А тут ещё цунами - аномально высокие волны, возникающие в океанах после землетрясений и смывающие на низких берегах посёлки и города вместе с жителями. Эти катастрофы всегда неожиданны, пугают их внезапность и непредсказуемость. Неужели современная наука не в состоянии предвидеть подобные катаклизмы? Ведь предсказывают же ураганы, торнадо, изменения погоды, наводнения, магнитные бури, даже извержения вулканов, а с землетрясениями - полный провал. И общество зачастую считает, что виноваты учёные. Так, в Италии попали под суд шестеро геофизиков и сейсмологов, которые в 2009 году не смогли предсказать землетрясение в Аквиле, унёсшее жизни 300 человек.

Казалось бы, имеется много разных инструментальных методов, приборов, фиксирующих малейшие деформации земной коры. А прогноз землетрясения не удаётся. Так в чём же дело? Чтобы ответить на этот вопрос, рассмотрим сначала, что же представляет собой землетрясение.

Самая верхняя оболочка Земли - литосфера, состоящая из твёрдой земной коры мощностью от 5-10 км в океанах и до 70 км под горными массивами, - подразделяется на ряд плит, называемых литосферными. Ниже располагается также твёрдая верхняя мантия, точнее, её верхняя часть. Эти геосферы состоят из различных горных пород, обладающих высокой твёрдостью. Но в толще верхней мантии на разных глубинах размещается слой, названный астеносферным (от греческого астенос - слабый), имеющий меньшую вязкость по сравнению с выше- и нижележащими породами мантии. Предполагается, что астеносфера является той «смазкой», по которой могут перемещаться литосферные плиты и части верхней мантии.

Во время движения пли`ты в одних местах сталкиваются, образуя огромные горно-складчатые цепи, в других, наоборот, раскалываются с образованием океанов, кора которых тяжелее коры континентов и способна погружаться под них. Эти взаимодействия плит вызывают колоссальные напряжения в горных породах, сжимая или, наоборот, растягивая их. Когда напряжения превышают предел прочности горных пород, происходит их очень быстрое, практически мгновенное, смещение, разрыв. Момент этого смещения и представляет собой землетрясение. Если мы хотим его предсказать, то должны дать прогноз места, времени и возможной силы.

Любое землетрясение представляет собой процесс, идущий с некоторой конечной скоростью, с образованием и обновлением множества разномасштабных разрывов, вспарыванием каждого из них с высвобождением и перераспределением энергии. При этом надо чётко понимать, что горные породы представляют собой не сплошной однородный массив. В нём есть трещины, структурно ослабленные зоны, которые значительно понижают его суммарную прочность.

Скорость распространения разрыва или разрывов достигает нескольких километров в секунду, процесс разрушения охватывает некоторый объём пород - очаг землетрясения. Его центр называется гипоцентром, а проекция на поверхность Земли - эпицентром землетрясения. Гипоцентры располагаются на разных глубинах. Наиболее глубокие - до 700 км, но чаще гораздо меньше.

Интенсивность, или сила, землетрясений, которая так важна для прогнозирования, характеризуется в баллах (мера разрушения) по шкале MSK-64: от 1 до 12, а также магнитудой М - безразмерной величиной, предложенной профессором Калифорнийского технологического института Ч. Ф. Рихтером, которая отражает количество высвобожденной общей энергии упругих колебаний.

Что такое прогноз?

Чтобы оценить возможность и практическую пользу прогноза землетрясений, нужно чётко определить, каким требованиям он должен отвечать. Это не угадывание, не тривиальное предсказание заведомо регулярных событий. Прогноз определяется как научно обоснованное суждение о месте, времени и состоянии явления, закономерности возникновения, распространения и изменения которого неизвестны или неясны.

Принципиальная прогнозируемость сейсмических катастроф долгие годы никаких сомнений не вызывала. Вера в безграничный предсказательный потенциал науки подкреплялась, казалось бы, вполне убедительными доводами. Сейсмические события с выделением огромной энергии не могут происходить в недрах Земли без подготовки. Она должна включать определённые перестройки структуры и геофизических полей, тем большие, чем интенсивней ожидаемое землетрясение. Проявления таких перестроек - аномальные изменения тех или иных параметров геологической среды - выявляются методами геолого-геофизического и геодезического мониторинга. Задача, следовательно, состояла в том, чтобы, располагая необходимыми методиками и аппаратурой, вовремя зафиксировать возникновение и развитие таких аномалий.

Однако оказалось, что даже в районах, где ведутся непрерывные тщательные наблюдения - в Калифорнии (США), Японии, - сильнейшие землетрясения всякий раз случаются неожиданно. Получить надёжный и точный прогноз эмпирическим путём не удаётся. Причину этого видели в недостаточной изученности механизма исследуемого процесса.

Таким образом, сейсмический процесс априори считался в принципе прогнозируемым, если механизмы, фактические данные и необходимые методики, неясные или недостаточные сегодня, будут поняты, пополнены и усовершенствованы в будущем. Каких-либо принципиально непреодолимых препятствий прогнозированию нет. Унаследованные от классической науки постулаты безграничных возможностей научного познания, предсказания интересующих нас процессов были до относительно недавнего времени исходными принципами любого естественно-научного исследования. А как эта проблема понимается сейчас?

Достаточно очевидно, что даже без специальных исследований можно уверенно «прогнозировать», например, в высокосейсмичной зоне перехода от азиатского континента к Тихому океану в ближайшие 1000 лет сильное землетрясение. Столь же «обоснованно» можно утверждать, что в районе острова Итуруп Курильской гряды завтра в 14:00 по московскому времени произойдёт землетрясение с магнитудой 5,5. Но цена таким прогнозам - ломаный грош. Первый из прогнозов вполне достоверен, но никому не нужен ввиду его крайне малой точности; второй достаточно точен, но также бесполезен, ибо его достоверность близка к нулю.

Из этого ясно, что: а) при любом определённом уровне изученности повышение достоверности прогноза влечёт за собой снижение его точности, и наоборот; б) при недостаточной точности прогноза каких-либо двух параметров (например, места и магнитуды землетрясения) даже точное предсказание третьего параметра (времени) теряет практический смысл.

Таким образом, главная задача и главная трудность прогнозирования землетрясения в том, чтобы предсказания его места, времени и энергии или интенсивности удовлетворяли бы требованиям практики одновременно и по точности, и по достоверности. Однако сами эти требования различны в зависимости не только от достигнутого уровня знаний о землетрясениях, но и от конкретных целей прогнозирования, которым отвечают разные типы прогноза. Принято выделять:

Сейсморайонирование (оценки сейсмичности на десятилетия - столетия;

Прогнозы: долгосрочный (на годы - десятилетия), среднесрочный (на месяцы - годы), краткосрочный (по времени 2-3 суток - часы, по месту 30-50 км) и иногда оперативный (на часы - минуты).

Особенно актуален краткосрочный прогноз: именно он - основание для конкретных предупреждений о предстоящей катастрофе и для неотложных действий по уменьшению ущерба от неё. Цена ошибок здесь очень велика. А ошибки эти бывают двух типов:

1. «Ложная тревога», когда после принятия всех мер для минимизации количества людских жертв и материальных потерь предсказанное сильное землетрясение не происходит.

2. «Пропуск цели», когда состоявшееся землетрясение не было предсказано. Такие ошибки чрезвычайно часты: практически все катастрофические землетрясения оказываются неожиданными.

В первом случае ущерб от нарушения ритма жизни и работы тысяч людей может быть очень большим, во втором - последствия чреваты не только материальными потерями, но и человеческими жертвами. В обоих случаях моральная ответственность сейсмологов за неверный прогноз очень велика. Это заставляет их быть предельно осторожными при выдаче (или невыдаче) властям официальных предупреждений о предстоящей опасности. В свою очередь власти, осознавая огромные трудности и тяжёлые последствия остановки функционирования плотно заселённого района или крупного города хотя бы на день-другой, отнюдь не спешат следовать рекомендациям многочисленных «самодеятельных» неофициальных прогнозистов, декларирующих 90%-ную и даже 100%-ную достоверность своих предсказаний.

Дорогая цена незнания

Между тем непредсказуемость геокатастроф обходится человечеству очень дорого. Как отмечает, например, российский сейсмолог А. Д. Завьялов, с 1965 по 1999 год землетрясения составляли 13% от общего числа природных катастроф в мире. С 1900 по 1999 год произошло 2000 землетрясений с магнитудой более 7. В 65 из них М была выше 8. Людские потери от землетрясений в XX веке составили 1,4 млн человек. Из них на последние 30 лет, когда количество жертв стали подсчитывать более точно, пришлось 987 тыс. человек, то есть 32,9 тыс. человек в год. Среди всех природных катастроф землетрясения стоят на третьем месте по количеству смертных случаев (17% от общего числа погибших). В России, на 25% её площади, где расположены около 3000 городов и посёлков, 100 крупных гидро- и тепловых электростанций, пять АЭС, возможны сейсмические сотрясения с интенсивностью 7 и более. Сильнейшие землетрясения в ХХ столетии происходили на Камчатке (4 ноября 1952 года, М = 9,0), на Алеутских островах (9 марта 1957 года, М = 9,1), в Чили (22 мая 1960 года, М = 9,5), на Аляске (28 марта 1964 года, М = 9,2).

Впечатляет перечень сильнейших землетрясений в недавние годы.

2004 год, 26 декабря. Суматро-Андаманское землетрясение, М = 9,3. Сильнейший афтершок (повторный толчок) с М = 7,5 возник спустя 3 ч 22 мин после главного удара. За первые сутки после него зарегистрировано около 220 новых землетрясений с М > 4,6. Цунами обрушилось на побережья Шри-Ланки, Индии, Индонезии, Таиланда, Малайзии; погибли 230 тыс. человек. Спустя три месяца возник афтершок с М = 8,6.

2005 год, 28 марта. Остров Ниас, в трёх километрах от Суматры, землетрясение с М = 8,2. Погибли 1300 человек.

2005 год, 8 октября. Пакистан, землетрясение с М = 7,6; погибли 73 тыс. человек, более трёх миллионов остались без крова.

2006 год, 27 мая. Остров Ява, землетрясение с М = 6,2; погибли 6618 человек, 647 тыс. остались без крова.

2008 год, 12 мая. Провинция Сычуань, Китай, в 92 км от г. Ченду, землетрясение М = 7,9; погибли 87 тыс. человек, 370 тыс. ранены, 5 миллионов остались без крова.

2009 год, 6 апреля. Италия, землетрясение с М = 5,8 близ исторического г. Аквила; жертвами стали 300 человек, ранены 1,5 тыс., более 50 тыс. остались без крова.

2010 год, 12 января. Остров Гаити, в нескольких милях от побережья два землетрясения с М = 7,0 и 5,9 в течение нескольких минут. Погибли около 220 тыс. человек.

2011 год, 11 марта. Япония, два землетрясения: М = 9,0, эпицентр в 373 км к северо-востоку от Токио; М = 7,1, эпицентр в 505 км к северо-востоку от Токио. Катастрофическое цунами, погибли более 13 тыс. человек, 15,5 тыс. пропали без вести, разрушение АЭС. Спустя 30 мин после главного толчка - афтершок с М = 7,9, затем ещё один толчок с М = 7,7. За первые сутки после землетрясения зарегистрировано около 160 толчков с магнитудами от 4,6 до 7,1, из них 22 толчка с М > 6. За вторые сутки количество зарегистрированных афтершоков с М > 4,6 составило около 130 (из них 7 афтершоков с М > 6,0). За третьи сутки это число снизилось до 86 (в том числе один толчок с М = 6,0). На 28-е сутки произошло землетрясение с М = 7,1. К 12 апреля было зарегистрировано 940 афтершоков с М > 4,6. Эпицентры повторных толчков покрыли область протяжённостью около 650 км, в поперечнике около 350 км.

Все, без исключений, перечисленные события оказывались неожиданными или «предсказанными» не настолько определённо и точно, чтобы можно было принять конкретные меры безопасности. Между тем утверждения о возможности и даже многократных реализациях надёжного краткосрочного прогноза конкретных землетрясений нередки как на страницах научных изданий, так и в интернете.

История двух прогнозов

В районе города Хайчэн, провинция Ляонин (Китай), в начале 70-х годов прошлого столетия неоднократно отмечались признаки возможного сильного землетрясения: изменения наклонов земной поверхности, геомагнитного поля, электросопротивления грунтов, уровня воды в колодцах, поведения животных. В январе 1975 года было объявлено о предстоящей опасности. К началу февраля внезапно поднялся уровень воды в колодцах, сильно возросло число слабых землетрясений. К вечеру 3 февраля власти были уведомлены сейсмологами о близкой катастрофе. На следующее утро произошло землетрясение с магнитудой 4,7. В 14:00 было объявлено о вероятности ещё более сильного удара. Жители покинули дома, были приняты меры безопасности. В 19:36 мощный толчок (М = 7,3) вызвал обширные разрушения, но жертв оказалось немного.

Это единственный пример удивительно точного по времени, месту и (приблизительно) по интенсивности краткосрочного прогноза разрушительного землетрясения. Однако иные, очень немногие оправдавшиеся прогнозы были недостаточно определёнными. Главное же - число как непредсказанных реальных событий, так и ложных тревог оставалось чрезвычайно большим. Это означало, что надёжного алгоритма устойчивого и точного предсказания сейсмокатастроф нет, а хайчэнский прогноз - скорее всего, лишь необычайно удачное стечение обстоятельств. Так, чуть больше года спустя, в июле 1976-го, в 200-300 км к востоку от Пекина произошло землетрясение с M = 7,9. Был полностью разрушен г. Таншань, погибли 250 тыс. человек. Определённых предвестников катастрофы не наблюдалось, тревога не объявлялась.

После этого, а также после неудачи многолетнего эксперимента по прогнозу землетрясения в Паркфилде (США, штат Калифорния) в середине 80-х годов прошлого века возобладало скептическое отношение к перспективам решения проблемы. Это нашло отражение в большинстве докладов на совещании «Оценка проектов по прогнозу землетрясений» в Лондоне (1996 г.), проведённом Королевским астрономическим обществом и Объединённой ассоциацией геофизики, а также в дискуссии сейсмологов разных стран на страницах журнала «Nature» (февраль - апрель 1999 года).

Значительно позже Таншаньского землетрясения российский учёный А. А. Любушин, анализируя данные геофизического мониторинга тех лет, смог выявить аномалию, предшествовавшую этому событию (на верхнем графике рис. 1 оно выделено правой вертикальной линией). Соответствующая этой катастрофе аномалия присутствует и на нижнем, модифицированном, графике сигнала. На обоих графиках имеются и другие аномалии, ненамного уступающие упомянутой, однако не совпавшие с какими-либо землетрясениями. Но никакого предвестника Хайчэнского землетрясения (левая вертикальная линия) первоначально найдено не было; аномалия выявилась только после модификации графика (рис. 1, внизу). Таким образом, хотя выявить предвестники Таншаньского и в меньшей степени Хайчэнского землетрясений в данном случае апостериори удалось, надёжного прогнозного выделения признаков будущих разрушительных событий найдено не было.

В наши дни, анализируя результаты длительных, с 1997 года, непрерывных записей микросейсмического фона на Японских островах, А. Любушин обнаружил, что ещё за полгода до сильного землетрясения на о. Хоккайдо (М = 8,3; 25 сентября 2003 года) произошло уменьшение среднего по времени значения сигнала-предвестника, после чего сигнал не вернулся к прежнему уровню и стабилизировался на низких значениях. Это с середины 2002 года сопровождалось увеличением синхронизации значений данного признака по разным станциям. Такая синхронизация с позиций теории катастроф - признак приближающегося перехода исследуемой системы в качественно новое состояние, в данном случае - указание на предстоящее бедствие. Эти и последующие результаты обработки имевшихся данных привели к предположению, что событие на о. Хоккайдо, хотя и сильное, всего лишь форшок ещё более мощной предстоящей катастрофы. Так, на рис. 3 видны две аномалии поведения сигнала-предвестника - острые минимумы в 2002 и 2009 годах. Поскольку после первого из них последовало землетрясение 25 сентября 2003 года, то второй минимум мог быть предвестником ещё более мощного события с М = 8,5-9. Его место указывалось как «Японские о-ва»; более точно оно было определено ретроспективно, постфактум. Время события прогнозировалось вначале (апрель 2010 года) на июль 2010 года, затем - от июля 2010 года на неопределённый период, что исключало возможность объявления тревоги. Произошло оно 11 марта 2011 года, причём, судя по рис. 2, его можно было ожидать и раньше, и позже.

Данный прогноз относится к среднесрочным, которые бывали успешными и прежде. Краткосрочные же удачные прогнозы всегда единичны: найти какой-либо устойчиво эффективный набор предвестников не удавалось. И сейчас нет способов заранее узнать, в каких ситуациях будут эффективны те же предвестники, что и в прогнозе А. Любушина.

Уроки прошлого, сомнения и надежды на будущее

Каково же современное состояние проблемы краткосрочного сейсмопрогнозирования? Разброс мнений очень велик.

В последние 50 лет попытки прогноза места и времени сильных землетрясений за несколько суток были безуспешны. Выделить предвестники конкретных землетрясений не удалось. Локальные возмущения различных параметров среды не могут быть предвестниками отдельных землетрясений. Не исключено, что краткосрочный прогноз с нужной точностью вообще нереален.

В сентябре 2012 года, в ходе 33-й Генеральной ассамблеи Европейской сейсмологической комиссии (Москва), генеральный секретарь Международной ассоциации сейсмологии и физики недр Земли П. Сухадолк признал, что в ближайшее время прорывных решений в сейсмологии не ожидается. Отмечалось, что ни один из более 600 известных предвестников и никакой их набор не гарантируют предсказания землетрясений, которые бывают и без предвестников. Уверенно указать место, время, мощность катаклизма не удаётся. Надежды возлагаются лишь на предсказания там, где сильные землетрясения происходят с некоторой периодичностью.

Так возможно ли в будущем повысить одновременно точность и достоверность прогноза? Прежде чем искать ответ, следует понять: а почему, собственно, землетрясения должны быть прогнозируемы? Традиционно полагают, что любое явление прогнозируемо, если достаточно полно, подробно и точно изучены уже происшедшие подобные события, и прогнозирование можно строить по аналогии. Но будущие события происходят в условиях, не тождественных прежним, и поэтому непременно в чём-то от них отличаются. Такой подход может быть эффективен, если, как подразумевается, отличия в условиях зарождения и развития исследуемого процесса в разных местах, в разное время невелики и меняют его результат пропорционально величине таких отличий, то есть также незначительно. При неоднократности, случайности и разнозначности подобных отклонений они существенно взаимокомпенсируются, позволяя получать в итоге не абсолютно точный, но статистически приемлемый прогноз. Однако возможность такой предсказуемости в конце XX века была поставлена под сомнение.

Маятник и песчаная куча

Известно, что поведение множества природных систем достаточно удовлетворительно описывается нелинейными дифференциальными уравнениями. Но их решения в некоторой критической точке эволюции становятся неустойчивыми, неоднозначными - теоретическая траектория развития разветвляется. Та или иная из ветвей непредсказуемо реализуется под действием одной из множества малых случайных флуктуаций, всегда происходящих в любой системе. Предсказать выбор можно было бы лишь при точном знании начальных условий. Но к их малейшим изменениям нелинейные системы весьма чувствительны. Из-за этого выбор пути последовательно всего в двух-трёх точках ветвления (бифуркации) приводит к тому, что поведение решений вполне детерминистических уравнений оказывается хаотическим. Это выражается - даже при плавном увеличении значений какого-либо параметра, например давления, - в самоорганизации коллективных нерегулярных, скачкообразно перестраивающихся перемещений и деформаций элементов системы и их агрегаций. Такой режим, парадоксально сочетающий детерминированность и хаотичность и определяемый как детерминистский хаос, отличный от полной разупорядоченности, отнюдь не исключителен, и не только в природе. Приведём простейшие примеры.

Сжимая строго по продольной оси гибкую линейку, мы не сможем предсказать, в какую сторону она изогнётся. Качнув маятник без трения настолько сильно, чтобы он достиг точки верхнего, неустойчивого положения равновесия, но не более, мы не сможем предсказать, пойдёт ли маятник вспять или сделает полный оборот. Посылая один бильярдный шар в направлении другого, мы приблизительно предвидим траекторию последнего, но после его столкновений с третьим, а тем более с четвёртым шаром наши прогнозы окажутся очень неточными и неустойчивыми. Наращивая равномерной подсыпкой кучу песка, при достижении некоторого критического угла её склона увидим, наряду со скатыванием отдельных песчинок, непредсказуемые лавинообразные обрушения спонтанно возникающих агрегаций зёрен. Таково детерминированно-хаотическое поведение системы в состоянии самоорганизованной критичности. Закономерности механического поведения отдельных песчинок дополняются здесь качественно новыми особенностями, обусловленными внутренними связями совокупности песчинок как системы.

Принципиально похоже формируется разрывная структура породных массивов - от начального рассредоточенного микрорастрескивания к разрастанию отдельных трещин, затем - к их взаимодействиям и взаимосочленениям. Опережающее разрастание какого-то одного, заранее непредсказуемого нарушения среди конкурирующих превращает его в магистральный сейсмогенный разрыв. В этом процессе каждый единичный акт образования разрыва вызывает непрогнозируемые перестройки структуры и напряжённого состояния в массиве.

В приведённых и других подобных примерах не прогнозируемы ни конечный, ни промежуточные результаты нелинейной эволюции, определённой начальными условиями. Связано это не с воздействием множества трудно учитываемых факторов, не с незнанием законов механического движения, а с невозможностью оценить начальные условия абсолютно точно. В этих обстоятельствах даже малейшие их различия быстро разводят исходно близкие траектории развития сколь угодно далеко.

Традиционная стратегия прогнозирования катастроф сводится к выявлению отчётливой аномалии-предвестника, порождённой, например, концентрацией напряжений у окончаний, изломов, взаимопересечений разрывов. Чтобы стать достоверным признаком приближающегося толчка, такая аномалия должна быть единичной и контрастно выделяющейся на окружающем фоне. Но реальная геосреда устроена по-другому. Под нагрузкой она ведёт себя как грубо- и самоподобно-блочная (фрактальная). Это означает, что блок любого масштабного уровня вмещает относительно немного блоков меньших размеров, а каждый из них - столько же ещё меньших и т.д. В такой структуре не может быть чётко обособленных аномалий на однородном фоне, в ней присутствуют неконтрастно различающиеся макро-, мезо- и микроаномалии.

Это делает бесперспективной традиционную тактику решения проблемы. Отслеживание подготовки сейсмокатастроф одновременно в нескольких относительно близких по потенциальной опасности очагах снижает вероятность пропуска события, но в то же время повышает вероятность ложной тревоги, поскольку наблюдаемые аномалии не единичны и не контрастны на окружающем пространстве. Можно предвидеть детерминированно-хаотический характер нелинейного процесса в целом, отдельных его стадий, сценариев перехода от стадии к стадии. Но требуемые надёжность и точность краткосрочных прогнозов конкретных событий остаются недостижимыми. Давняя и почти всеобщая убеждённость в том, что любая непредсказуемость - лишь следствие недостаточной изученности и что при более полном и детальном изучении сложная, хаотичная картина непременно сменится более простой, а прогноз станет надёжным, оказалась иллюзией.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций