Оптические аберрации (искажения) зрительной системы человека

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

АБЕРРАЦИИ КАК НЕСОВЕРШЕНСТВО ГЛАЗА Аберрация – любое угловое отклонение узкого параллельного (коллимированного) пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через оптическую систему глаза.

А хроматические дифракционные монохроматические Высшего порядка Сферические Кома Астигматизм косых пучков Кривизна поля Дисторсия Нерегулярные Низшего (1, 2) Аметропии Астигматизм

ПРИЧИНЫ ПОЯВЛЕНИЯ АБЕРРАЦИЙ Формы и прозрачность роговицы и хрусталика; состояние сетчатки; прозрачность внутриглазной жидкости и стекловидного тела. Увеличение диаметра зрачка. Если при диаметре зрачка равном 5, 0 мм превалируют А 3–го порядка, то при его увеличении до 8, 0 мм возрастает доля А 4 – го порядка. Критический размер зрачка, при котором А высших порядков оказывают наименьшее влияние = 3, 22 мм. Аккомодация. С возрастом А увеличиваются, и в период от 30 до 60 лет А высшего порядка удваиваются, т. к. со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные А. Спазм аккомодации - излишне стойкое напряжение аккомодации, обусловленное таким сокращением ресничной мышцы, которое не исчезает под влиянием условий, когда аккомодация не требуется. Состояние слезной пленки. При разрушении слезной пленки А высших порядков увеличиваются в 1, 44 раза. Одна из разновидностей нарушения слезной пленки – синдром сухого глаза. Ношение контактных линз. Мягкие КЛ могут вызывать волновые монохроматические А высокого порядка, тогда как жесткие КЛ уменьшают А 2–го порядка. Однако асферичность поверхности жестких КЛ может быть причиной сф. А. Асферические КЛ могут вызывать большую нестабильность остроты зрения, чем сферические КЛ. Мультифокальные КЛ могут индуцировать А по типу комы и 5–го порядка.

ХРОМАТИЧЕСКАЯ АБЕРРАЦИЯ Это искажение изображения, связанное с тем, что лучи видимого света, имея разную длину волны и падая на линзу параллельным пучком, преломляясь, фокусируются не в одной точке. КВЛ (синезеленые) фокусируются дальше от сетчатки, чем ДВ (красные). Это хроматизм положения. В результате изображение размывается, и края его окрашиваются. Если фокус синих лучей совместить с сетчаткой, изображение точки будет окружено красным ореолом, и наоборот. Очертания воспринимаемых предметов могут окрашиваться при гиперметропии – красным, при миопии – синим цветом. Практическое значение ХА более заметно при проведении дуохромного теста для уточнения оптической установки глаза при аметропии. В условиях освещения белым светом человек не различает цветные каемки вокруг наблюдаемых предметов. Это объясняется наложением цветных ореолов один на другой и малыми угловыми размерами цветных каемок. ХА не оказывают существенного влияния на центральное зрение.

ДИФРАКЦИОННАЯ Связана с нарушением прямолинейности, отклонением, световой волны при ее распространении мимо резких краев непрозрачных или прозрачных структур, формирующих отверстия. Такой структурой в глазу является зрачок. В результате дифракции света на границе зрачка, где согласно законам геометрической оптики должен быть четкий переход от тени к свету, возникает ряд светлых и темных дифракционных колец, проецируемых на сетчатку. С уменьшением диаметра зрачка диаметр дифракционного круга светорассеянья увеличивается. Но при этом сферическая аберрация уменьшается.

СФЕРИЧЕСКАЯ Есть различие в преломлении светового луча между центром сферической оптической поверхности и ее периферией. В основе сф. А лежит кривизна роговицы и хрусталика. Влияние сф. А на качество изображения зависит от величины зрачка. При малых размерах зрачка от 2 до 4 мм сф. А минимальна, но резко возрастает при расширении зрачка. Если преломление лучей через периферическую часть зрачка сильнее, чем через центральную, то сф. А называется положительной (н-р, при неизмененной роговице). При обратном положении возникает отрицательная сферическая аберрация (н-р, при уплощении центра роговицы после лазерной фотоабляции). Сф. А носит индивидуальный характер. Поверхность хрусталика, которая также индивидуальна, может частично компенсировать сф. А роговицы.

АСТИГМАТИЗМ Это А наклонных пучков (А больших углов наклона). Возникает из-за асферичности преломляющих поверхностей глаза. Если на оптическую систему направлен узкий пучок лучей, находящийся на значительном расстоянии от оптической оси, то он сфокусируется в виде двух взаимно перпендикулярных отрезков на определенном расстоянии друг от друга, образуя при этом изображение в виде хорошо известного коноида Штурма (эллипс, за ним кружок, и снова эллипс). Такое состояние равносильно прямому падению лучей на торическую поверхность. Астигматизм снижает зрительное разрешение. Частный случай астигматизма физиологический. При нем сохранена нормальная острота зрения. Он обусловлен несколькими факторами: асферичностью преломляющих поверхностей, астигматизмом наклонных лучей, децентрированием преломляющих поверхностей и различиями в оптической плотности преломляющих сред.

КОМА Возникает при несовпадении центров изображений светящихся точек, расположенных вне оси оптической системы (аберрация малых углов наклона оптических пучков). Наложение изображений принимает вид несимметричного пятна, напоминающего запятую. Одной из причин комы является отсутствие соосности между оптическими центрами роговицы, хрусталика и фовеолы. К усилению комы может приводить децентрирование новых оптических зон при различных способах хирургической коррекции аметропий. Схема образования комы: лучи, приходящие под углом к оптической оси собираются не в одной точке

КРИВИЗНА ПОЛЯ ИЗОБРАЖЕНИЯ Обусловлена тем, что изображение плоского предмета получается резким не в плоскости, как это должно быть в идеальной оптической системе, а на искривленной поверхности. Она представляет собой срединную поверхность между обеими астигматическими, которые возникают вследствие отображения каждой точки отрезка двумя изображениями, лежащими в сагиттальной и меридиональной плоскостях.

ДИСТОРСИЯ Нарушается геометрическое подобие между объектом и его изображением. При Д линейное увеличение разных частей изображения различно в пределах всего поля, т. К. разноудаленные от оптической оси точки предмета изображаются с разным увеличением. Прямоугольное изображение может перейти в «бочкообразное» (- Д) или «подушкообразное» (+Д). Такой же эффект могут создавать астигматические очковые линзы, сжимающие ли растягивающие предметы в одном направлении.

КАРТА ОПТИЧЕСКИХ ОТКЛОНЕНИЙ РЕАЛЬНЫХ СВЕТОВЫХ ЛУЧЕЙ ОТ ИДЕАЛЬНЫХ В ПРОЕКЦИИ ЗРАЧКА НАЗЫВАЕТСЯ ВОЛНОВЫМ ФРОНТОМ. Оптическая система с минимальным количеством аберраций имеет плоский, или сферический, волновой фронт. В реальной физиологической оптической системе всегда есть отклонения от плоского волнового фронта.

ТАК, ГЛАЗ БЕЗ АБЕРРАЦИЙ ИМЕЕТ ПЛОСКИЙ ВОЛНОВОЙ ФРОНТ И ДАЕТ НАИБОЛЕЕ ПОЛНОЦЕННОЕ ИЗОБРАЖЕНИЕ НА СЕТЧАТКЕ ТОЧЕЧНОГО ИСТОЧНИКА (ТАК НАЗЫВАЕМЫЙ «ДИСК ЭЙРИ» , РАЗМЕР КОТОРОГО ЗАВИСИТ ТОЛЬКО ОТ ДИАМЕТРА ЗРАЧКА). Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным.

Количественной характеристикой оптического качества изображения является среднеквадратич ное значение ошибок отклонения реального волнового фронта от идеального. Для описания аберраций волнового фронта используют серии полиномов математического формализма Зернике. Призматический наклон описывают полиномами 1 -го порядка (Z 1), дефокус и астигматизм – 2 -го, кому относят к 3 -му, а сферическую аберрацию к 4 -му порядку. Более высокие порядки известны, как нерегулярные аберрации.

Как измеряется волновой фронт Оптическая система считается хорошей, если коэффициенты Зернике близки к нулю и, следовательно, среднеквадратич ное значение ошибок волнового фронта меньше 1/14 длины световой волны (критерий Марешаля). Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке. Для определения аберраметрии зрительной системы человека используется специальный прибор – аберрометр.

Методы определения аберрации глаза В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах. 1. Анализ ретинального изображения мишени 2. Анализ вышедшего из глаза отраженного луча 3. Основан на компенсаторной юстировке падающего на фовеолу светового пучка

Идеально исправленная по всем аберрациям оптическая система не может дать точного изображения предмета! Точка никогда не изображается точкой. Причина связана с волновой природой света, создающей дифракционные явления. Точечный источник света изображается на сетчатке не в виде одной точки, а виде более светлого пятна, окруженного рядом концентрических менее светлых колец убывающей яркости (диск Эйри). Качество зрительного восприятия зависит от разрешающей способности сетчатки, дифракции света в области зрачка и свойств оптических сред глаз. Одной из особенностей человеческого глаза является наличие глубины фокусной области, в пределах которой может не происходить изменения качества изображения. Зрительное восприятие регулируется не только физиологической оптикой, но и корковыми структурами центральной нервной системы. Улучшая оптику глаза путем снижения аберрации, можно повысить зрительное разрешение от обычного уровня к более высокому.

КЛИНИЧЕСКАЯ РОЛЬ А И АБЕРРОМЕТРИИ Выраженность А зависит от многих факторов, к которым относят размер зрачка, возраст пациента, рефракцию, аккомодацию. А непостоянны и меняются во времени с частотой около 2 Гц. Характер А может изменить даже направление взгляда человека, что необходимо при рассматривании предметов. Эффект Стайлса-Кроурфорда, при котором световой пучок в центральной зоне зрачка более яркий, чем в его периферической части, частично смягчает А. В нормальных глазах среднее значение А высшего порядка при диаметре зрачка 5 мм составляет 0. 25 мкм, что адекватно 0. 25 дптр дефокусировки. При возрастании уровня А их значения могут превышать нормальные в 2 -10 раз.

Лазерная фотоабляция роговицы в различных ее вариантах при хирургической коррекции аметропий дает возможность получения высокого зрительного разрешения, но при этом увеличивает А высшего порядка, проявляющиеся при диаметре зрачка 5 мм и более. При практическом применении оптических средств и хирургических методов существуют факторы, которые ограничивают возможности зрительного разрешения. Например, любые динамические изменения параметров аккомодации или зрачка приведут к искажениям на сетчатке за счет остаточных А. Статистическая коррекция А не способна сделать глаз свободным от нежелательного их влияния. Только динамическая коррекция, основанная на принципах адаптивной оптики, используемая при визуализации глазного дна, лишена недостатков. Устранение монохроматических А тут же приводит к доминированию хроматических. А устранить эффект светорассеяния невозможно даже при устранении А.

Достижение суперзрения при полной коррекции А глаза вряд ли возможно и целесообразно! Во-первых, А сами по себе динамичны. Во-вторых, существуют нейрорецепторные ограничения зрительного разрешения, обусловленные расположением фоторецепторов сетчатки. Повышение зрительного разрешения может вызвать зрительные иллюзии. Положительная роль А высокого порядка заключается в том, что они увеличивают глубину фокусной области. Если устранить эти А, сохранив только аметропию, то произойдет контрастная инверсия воспринимаемых изображений – белое и черное поменяются местами. данной ситуации А являются механизмом коррекции качества изображения. Отсутствие А, создающих малый уровень дефокусировки, частично устранило бы стимул к аккомодации, нарушив ее работу и снизив точность аккомодирования.

Аберрациями называют погрешности любой оптической системы, в том числе и глаза.

Выделяют аберрации низших порядков – близорукость, дальнозоркость и астигматизм, которые являются наиболее распространенными и составляют около 85% от всех аберраций.

Также существуют аберрации высших порядков, составляющие всего 15%, они достаточно разнообразны. К ним относятся кома, сферические аберрации и дисторсия.

В чем их причина и как они влияют на зрение?

Аберрации возникают в результате искажения световых лучей при прохождении через любую функциональную структуру глаза:

  • Слезная пленка, которая покрывает снаружи передний отдел глазного яблока, обеспечивая увлажнение, защиту переднего отдела глаза от попадания инородных тел, и участвует в преломлении световых лучей, сглаживая небольшие неровности роговицы.
  • Роговица – передняя прозрачная, имеющая форму сферы часть наружной оболочки глаза – участвует в преломлении световых лучей.
  • Водянистая влага – заполняет пространство между роговицей спереди и хрусталиком с радужной оболочкой сзади, участвует в преломлении.
  • Хрусталик – внутриглазная линза, преломляющая световые лучи.
  • Стекловидное тело – гель, заполняющий большой объем внутри полости глаза за хрусталиком, изнутри граничит с сетчаткой (светочувствительная оболочка глаза), участвует в проведении световых лучей.

Соответственно, при изменениях в любом из перечисленных отделов, могут возникать или усиливаться уже имеющиеся аберрации.


Различные изменения и заболевания могут приводить к появлению аберраций, например, недостаточность слезной пленки при синдроме сухого глаза; рубцы на роговице после операций, травм, инфекционных заболеваний; помутнение хрусталика (катаракта); изменения стекловидного тела при близорукости, после воспалительных заболеваний, травм, кровоизлияний.

Аберрации высших порядков ухудшают зрение и описываются как нечеткость изображения и предметов, блики, ореолы вокруг источников света, двоение, снижая тем самым качество зрения, особенно в условиях пониженной освещенности и в ночное время.

Выраженность симптомов зависит от ряда факторов, например, от причины, вызвавшей появление аберраций или величины зрачка. Так человек может замечать перечисленные проявления аберраций только в условиях пониженной освещенности, когда при расширении зрачка степень влияния аберраций на качество зрения увеличивается.

Диагностика.

Диагностика аберраций высших порядков стала возможной в последнее время благодаря технологии, использующей компьютерный анализ отклонения световых лучей при прохождении их до сетчатки глаза с последующим частичным отражением, так называемый волновой фронт.


Этот метод используется в специальном диагностическом оборудовании – аберрометрах, которые с высокой точностью определяют все погрешности в оптической системе глаза и степень их влияния на качество зрения.

Коррекция аберраций высших порядков.

Глаз человека не совершенен и в определенной степени имеет какие-либо аберрации. В том случае, если это не несет в себе ограничения профессиональной деятельности и ухудшения качества зрения, аберрации не требуют какой-то специфической коррекции.

Если же при диагностике определяется наличие аберраций, снижающих качество зрения, то в качестве мер коррекции может помочь специальная адаптивная оптика (очки, контактные линзы, интраокулярные линзы), которая, благодаря использованию технологии волнового фронта, сможет компенсировать влияние аберраций на качество зрения.

Альтернативой адаптивной оптике является рефракционная хирургия (хирургическое изменение преломляющей силы роговицы), которая позволяет использовать индивидуальную программу для достижения зрения высокого качества, основываясь на данных абберометрии.


P.S.: Оптическая система глаза складывается, прежде всего из взаимодействия двух природных линз: роговицы и хрусталика. Каждая из них может иметь оптические несовершенства - различную кривизну поверхности]. мелкие помутнения, различную плотность ткани в разных участках поверхности. Все это может давать аберрации высшего порядка.

Следует отметить, что средняя острота зрения человека принята условно за 100% - это возможность видеть с 5 метров 10-ю строчку классической таблицы Головина-Сивцева, которую можно встретить в любой поликлинике у офтальмолога.

Устраняя аберрации высшего порядка с помощью использования методики персонализированной аблящии (суперЛАСИК) и диагностической методики волнового фронта, можно добиться остроты зрения 1,2-2,0 (т.е. 120-200%). Но, прежде всего, важно повысить пространственно-контрастную чувствительность, т.е. четкость различения предметов, особенно при пониженном освещении. В этом случае при остроте зрения 100% и даже в 90% от среднестатистической нормы будет комфортна для повседневной жизни человека.

Как и любой «неидеальной» оптической системе, человеческому глазу свойственны оптические дефекты — аберрации, которые снижают качество зрения, искажая изображение на сетчатке. Аберрация — это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой при его прохождении через всю оптическую систему глаза.

В технической оптике качество оптической системы определяется аберрациями плоского или сферического фронта световой волны при прохождении через эту систему. Так, глаз без аберраций имеет плоский волновой фронт и дает наиболее полноценное изображение на сетчатке точечного источника (так называемый «диск Эйри», размер которого зависит только от диаметра зрачка). Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным.

Количественной характеристикой оптического качества изображения является среднеквадратичное значение ошибок отклонения реального волнового фронта от идеального. Немецкий математик Зернике (Zernike) ввел математический формализм, использующий серии полиномов для описания аберраций волнового фронта. Полиномы первого и второго, т. е. низших порядков, описывают привычные для офтальмологов оптические аберрации — близорукости, дальнозоркости и астигматизма. Менее известны полиномы высших порядков: третий соответствует коме — это сферическая аберрация косых пучков света, падающих под углом к оптической оси глаза. В ее основе лежит асимметрия оптических элементов глаза, в результате которой центр роговицы не совпадает с центром хрусталика. К аберрациям четвертого порядка относится сферическая аберрация, которая в основном обусловлена неравномерностью преломляемой силы хрусталика в различных его точках. Более высокие порядки известны как нерегулярные аберрации.

Как измеряется волновой фронт

Оптическая система считается хорошей, если коэффициенты Зернике близки к нулю и, следовательно, среднеквадратичное значение ошибок волнового фронта меньше 1/14 длины световой волны (критерий Марешаля). Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке. Для определения аберраметрии зрительной системы человека используется специальный прибор — аберрометр. В клиниках «Эксимер» использует аберрометр Wave Scan компании «VISX Inc» (США).

В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах.

Первый из них — это анализ ретинального изображения мишени (retinal imaging aberrometry) . На сетчатку проецируются два параллельных лазерных луча с длиной волны 650 нм и диаметром 0,3 мм, один из которых падает строго по зрительной оси и является опорным, а другой расположен на заданном расстоянии от него. Далее регистрируется степень отклонения второго луча от точки фиксации опорного луча, и таким образом последовательно анализируется каждая точка в пределах зрачка.

Второй принцип — анализ вышедшего из глаза отраженного луча (outgoing refraction aberrometry). Широко применялся в астрономии для компенсации аберраций в телескопах при прохождении через атмосферу и космическое пространство. С помощью диодного лазера с длиной волны 850 нм в глаз направляется коллимированный пучок излучения, который, пройдя через все среды глаза, отражается от сетчатки с учетом аберраций и на выходе попадает на матрицу, состоящую из 1089 микролинз. Каждая микролинза собирает неискаженные лучи в своей фокальной точке, а подверженные аберрации лучи фокусируются на некотором расстоянии от нее. Полученная информация обрабатывается компьютером и представляется в виде карты аберраций. На этом принципе построена работа Wave Scan.

Третий принцип основан на компенсаторной юстировке падающего на фовеолу светового пучка. В настоящее время этот способ применяется в качестве субъективного аберрометра, требующего активного участия пациента. В ходе исследования через вращающийся диск с отверстиями 1 мм, расположенный на одной оптической оси со зрачком, в глаз направляется пучок света. При вращении диска узкие параллельные пучки света проходят через каждую точку зрачка и при отсутствии аберраций проецируются на фовеолу, куда направлен другой луч с контрольной меткой в виде крестика. Если у пациента имеется близорукость, дальнозоркость, астигматизм или другие аберрации более высоких порядков, то он заметит несовпадение этих точек с крестиком и с помощью специального устройства должен будет их сопоставить. Угол, на который он смещает точку, отражает степень аберраций.

Разнообразие офтальмологических приборов, созданных с учетом новейших технологий и основанных на различных принципах действия, делает реальным не только качественную, но и количественную оценку аберрации низших и высших порядков, а также влияющих на них факторов.

Основные причины появления аберраций в оптической системе глаза

  • Формы и прозрачность роговицы и хрусталика; состояние сетчатки; прозрачность внутриглазной жидкости и стекловидного тела.
  • Увеличение диаметра зрачка . Если при диаметре зрачка равном 5,0 мм превалируют аберрации 3—го порядка, то при его увеличении до 8,0 мм возрастает доля аберраций 4 —го порядка. Рассчитано, что критический размер зрачка, при котором аберрации высших порядков оказывают наименьшее влияние, составляет 3,22 мм.
  • Аккомодация . Отмечено, что с возрастом аберрации увеличиваются, и в период от 30 до 60 лет аберрации высшего порядка удваиваются. Возможно, это связано с тем, что со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные аберрации. Аналогично происходит и при спазме аккомодации.
  • Спазм аккомодации встречается достаточно часто у людей разного возраста. В офтальмологии под спазмом аккомодации понимается излишне стойкое напряжение аккомодации, обусловленное таким сокращением ресничной мышцы, которое не исчезает под влиянием условий, когда аккомодация не требуется. Проще говоря, спазм аккомодации — это длительное статичное перенапряжение, глазной мышцы, например, из-за длительной работы за компьютером и возникновение вследствие этого компьютерного синдрома. Спазмы аккомодации могут развиваться при всех рефракциях (включая астигматизм). Спазм аккомодации вызывает ложную близорукость или усиливает близорукость истинную.
  • Состояние слезной пленки. Была обнаружено, что при разрушении слезной пленки аберрации высших порядков увеличиваются в 1,44 раза. Одна из разновидностей нарушения слезной пленки — синдром сухого глаза .
    Синдром сухого глаза возникает в связи с пересыханием поверхности роговицы от редкого моргания и непрерывного смотрения на объект работы. Исследования показали, что при работе на компьютере, а также при чтении человек моргает в три раза реже, чем обычно. В результате чего слезная пленка высыхает и не успевает восстанавливаться. Причинами возникновения синдрома сухого глаза могут быть: большие нагрузки на глаза при чтении и работе за компьютером, сухой воздух в помещениях, неправильное питание с недостаточным количеством витаминов, большая загрязненность воздуха, прием некоторых медикаментов.
  • Ношение контактных линз. Выявлено, что мягкие контактные линзы могут вызывать волновые монохроматические аберрации высокого порядка, тогда как жесткие контактные линзы значительно уменьшают аберрации 2-го порядка. Однако асферичность поверхности жестких контактных линз может быть причиной сферических аберраций. Асферические контактные линзы могут вызывать большую нестабильность остроты зрения, чем сферические контактные линзы. Мультифокальные контактные линзы могут индуцировать аберрации по типу комы и 5—го порядка.

В настоящее время разработана методика проведения индивидуализированной коррекции зрения (Super Lasik, Custom Vue ) на основе аберрометрии, которая позволяет, максимальным образом компенсируя все возможные искажения в зрительной системе, добиваться отличных результатов в практически любых сложных случаях.

Глазу, как любой оптической системе, присущ ряд аберраций. Наличие аберраций глаза приводит к тому, что каждая точка предмета изображается в виде пятна с довольно сложным распределением освещенности в нем. На оси системы наблюдаются сферическая и хроматическая аберрации.

Сферическая аберрация глаза обусловлена тем, что лучи, проходящие через периферические зоны зрачка, преломляются сильнее, чем лучи, проходящие через его центральную зону. Влияние сферической аберрации на качество изображения относительно мало при малых размерах зрачка (2 – 4 мм). При больших размерах зрачка влияние сферической аберрации становится сильнее, качество изображения на сетчатке глаза значительно ухудшается.

Вопросы сферической и хроматической аберраций глаза человека изучали Юнг, Гельмгольц и др. В 1947 г. появилась фундаментальная работа А.Иванова об измерении сферической и хроматической аберраций глаза. В 1961 г. Смирнов М.С. измерил волновую аберрацию глаза. Следует подчеркнуть, что измерения аберраций проводились только субъективным методом – по ответам испытуемого о восприятии предъявляемого объекта. Вследствие этого полученные данные относятся только к аберрациям центральной, макулярной области. Аберрации внеосевых точек, изображающихся на периферических участках сетчатки, испытуемый не в состоянии определить вследствие грубого строения этих зон сетчатки и ряда других физиологических факторов. На основе экспериментальных данных были построены кривые аберраций глаза.

Разброс параметров глаза у разных людей велик, меняется даже знак аберраций. Минимальными аберрации становятся при аккомодации на близкие предметы (1 – 2 м). В большинстве глаз имеется отрицательная аберрация. Такие аберрации характерны для тех случаев, когда рефракция роговицы высокая, а хрусталика низкая. Если аберрация роговицы ниже обычной, а хрусталика выше, то чаще наблюдается положительная аберрация.

Ход лучей при наличии сферической аберрации изображен на рис.8. По данным Иванова, при размере зрачка 4 мм сферическая аберрация глаза равна 1 дптр .

Рис. 8 – Ход лучей при наличии сферической аберрации

Особенность глаза по сравнению с обычной оптической системой состоит в том, что в глазу сферическая аберрация частично компенсируется, во-первых, благодаря тому, что периферические зоны оптической системы глаза имеют более слабую рефракцию (меньшую оптическую силу) в связи с меньшим показателем преломления периферических зон хрусталика по сравнению с его ядром, во-вторых, благодаря некоторому увеличению радиусов кривизны периферической части роговицы.

Сферическая аберрация зависит от аккомодации, она как правило, увеличивается с ростом аккомодационного напряжения.

Ход лучей при наличии хроматической аберрации представлен на рис.9. Хроматическая аберрации проявляется в том, что падающий на линзу параллельный пучок белого света фокусируется не в одной точке: коротковолновые лучи соберутся ближе к линзе, чем лучи большей длины волны. Это приводит к тому, что изображение белой точки в любой плоскости получается в виде окрашенного пятна. Если фокус синих лучей совместить с сетчаткой, изображение точки будет окружено красным ореолом, и наоборот; хроматическая аберрация зависит от диаметра зрачка глаза, увеличивается вместе с ним.

Рис. 9 – Ход лучей при наличии хроматической аберрации

Величина хроматической аберрации для крайних длин волн видимого спектра в среднем составляет 1,3 дптр. Это значение было установлено еще Т.Юнгом.

В обычных условиях освещения белым светом мы не различаем цветных каемок вокруг наблюдаемых предметов. Это объясняется наложением цветных ореолов один на другой и малыми угловыми размерами цветных каемок. Определение остроты зрения в монохроматическом свете, а также применение специальных средств для исправления хроматической аберрации не привели к существенному повышению остроты зрения, т.е. хроматические аберрации не оказывают существенного влияния на центральное зрение.

Кроме сферической и хроматической аберрации глазу присуща такая аберрация как физиологический астигматизм.

Под физиологическим астигматизмом понимают такой астигматизм глаза, при котором сохраняется нормальная острота зрения. Физиологический астигматизм свойственен каждому глазу и обусловлен несколькими основными факторами: асферичностью преломляющих поверхностей, астигматизмом косо падающих лучей, децентрированием преломляющих поверхностей и неравномерностью оптической плотности преломляющих сред.

Приведем пример распределения рефракции в зрачковой области при физиологическом астигматизме (рис.10).

Рис. 10 – Один из примеров распределения рефракции в зрачковой области при физиологическом астигматизме

Беспорядочность структуры физиологического астигматизма обуславливает невозможность коррегирования его цилиндрическими или контактными линзами. Последние способны исправить роговичный астигматизм, но хрусталиковый компонент физиологического астигматизма сохраняется в полной мере.



Величина физиологического астигматизма не может быть измерена традиционным способом – разностью в двух взаимно-перпендикулярных плоскостях (меридианах). Простейшим вариантом оценки может служить разница самой сильной и самой слабой рефракции. Используют также понятие коэффициента астигматизма К :

,

где a – отклонения от среднего арифметического значения (без учета знака) величин рефракций в отдельных зонах зрачковой области; n – число измерений рефракции.

Для приведенного примера К = 0,34 дптр.

Установлена четкая зависимость между степенью физиологического астигматизма и остротой центрального зрения (табл.3).

Таблица 3 – Зависимость остроты зрения от коэффициента физиологического астигматизма

Чем меньше физиологический астигматизм, тем выше острота зрения. Эта закономерность справедлива для остроты зрения в диапазоне 1,0 – 2,0, т.е. для абсолютного большинства нормальных глаз.

ГЛУБИНА ФОКУСНОЙ ОБЛАСТИ ГЛАЗА .

Любой оптической схеме присуща глубина резкости в пространстве изображений, в пределах которой смещения экрана (сетчатки для глаза) не вызывают заметного изменения качества изображения. Офтальмологи эту величину называют глубиной фокусной области .

Очевидно, что глубина фокусной области зависит от диаметра зрачка: чем меньше диаметр, тем больше глубина. Одна из причин наличия глубин фокусной области – это конечная толщина световоспринимающего слоя (примерно 0,06 мм). Это дает значение одной из составляющей глубины фокусной области, равное 0,2 дптр.

По результатам Сергиенко Н.М. глубина фокусной области равна (0,63 ± 00,24) дптр при наиболее часто встречающейся остроте зрения 1,35 – 1,5 (D p = 5 мм). Влияние диаметра зрачка на глубину фокусной области по данным Campbell F.W. и других авторов приведено в табл.4.

Таблица 4 – Влияние диаметра зрачка глаза на глубину фокусной области

ДИФРАКЦИОННЫЙ ПРЕДЕЛ РАЗРЕШЕНИЯ ГЛАЗА . Вспомним, что никакая, даже идеально исправленная на все аберрации оптическая система не может дать точного изображения предмета. Точка никогда не изображается точкой. Причина – неразрывно связанные с волновой природой света дифракционные явления. Точечный источник света изображается на сетчатке не в виде одной четкой точки, а в виде кружка, окруженного рядом концентрических светлых колец убывающей яркости.

Для глаза диаметр центрального светлого кружка для излучения с длиной волны λ зависит от диаметра зрачка D p и заднего фокусного расстояния f " :

,(5)

где n – показатель преломления стекловидного тела.

С уменьшением диаметра зрачка диаметр дифракционного кружка светорассеяния увеличивается. Однако при этом сферическая аберрация уменьшается. Ввиду такой обратной зависимости наилучшие условия наиболее четкого наблюдения объектов имеют место при диаметре зрачка 2 – 4 мм. Кроме того, для точек, не лежащих на оси системы, наблюдаются и другие аберрации, например, астигматизм наклонных пучков, кома, а также аберрации, вызывающие искажение формы изображения. Последняя из них – дисторсия – изменяет увеличение при удалении предмета от оси оптической системы. Наличие в оптической системе глаза довольно больших аберраций при большом диаметре зрачка приводит к перераспределению освещенности в дифракционной фигуре: освещенность в центральном максимуме уменьшается, а в дифракционных кольцах возрастает.

Описанные выше несовершенства глаза оказывают суммарное действие на предел разрешения. В работе показано, что не аберрации глаза, а главным образом дифракция света на зрачке глаза ограничивает остроту зрения. Таким образом, оптическая система эмметропического глаза исправлена достаточно хорошо, чтобы полностью использовать все возможности волновой природы света.

  • Аберрации различных порядков
  • Исправление сферических аберраций
  • Линзы сферические и асферические – в чем разница
  • Преимущества линз асферического дизайна
  • Особенности подбора
  • Цены и производители асферических линз

На сегодняшний день практически каждый человек уже слышал о высоком качестве расширения. Если вы желаете улучшить качество своего зрения, тогда в этом случае необходимо использовать асферические линзы для глаз.

Асферические линзы - это уникальный продукт

Многие люди сталкиваются с размытой картинкой или плохой видимости при низком освещении. Причина всего этого будет заключаться в аберрации высших порядков.

Аберрации различных порядков

Под аберрациями может подразумеваться искажение изображений, которые будут получены при помощи оптических систем. Если у вас действительно присутствуют искажения, тогда предметы будут выглядеть не такими, как являются.

Позитивные и негативные аберрации глаза

Аберрации могут быть низшего или высшего порядка. К аберрациям низшего порядка можно отнести распространенные расстройства зрения, которые можно вылечить с помощью обычных корректирующих приборов. Для их определения вам необходимо использовать специальные диагностические устройства, а также специальные таблицы, которые предназначаются для проверки зрения. Перед использованием этих линз изучите срок годности линз.

К аберрациям высшего порядка все сложнее. Традиционными методами их выявить будет просто невозможно. Для их выявления могут потребоваться компьютеризованными устройствами, которые имеют название аберрометрами. Эти устройства будут показывать графическое изображение волнового фронта пучка лучей света. Все полиномы 3 степени и будут относится к высшим порядкам.

Ореолы вокруг источников света - это симптом аберрации

Если перейти к детальному изучению, тогда можно сделать вывод о том, что искажения могут возникать по разным причинам:

  1. Сферические. Они могут появиться, когда параллельные лучи, которые попадают на периферии хрусталика и преломляются больше тех, что попадают на его центр.
  2. Кома – это сферические искажения косых лучей света, которые попадают под определенным углом к глазной оси. Если говорить простыми словами, тогда центр хрусталика просто не будет совпадать с центром роговицы.
  3. Хроматические – это результат более сильного преломления коротковолновых лучей белого спектра в зрительной системе. Из-за этого многоцветовые объекты просто не будут восприниматься глазом с абсолютной четкостью.

Теперь пришло время изучить, как исправить подобные искажения.

Исправление сферических аберраций

Ранее корректировка зрения осуществлялась с помощью обычных очковых линз. Именно поэтому в скором времени были созданы асферические типы линз, которые способны исправлять подобные искажения. Практика на сегодняшний день доводит, что этот способ коррекции еще далеко от идеального.

Вот так будет выглядеть вид в асферических линзах

Если человек будет смотреть в сторону, тогда прибор будет видеть с другими параметрами. Из-за этого картинка может искажаться, так как линза соответствует индивидуальным параметрам человека. Чем ближе к ее краю будет смотреть пациент, тем больше будет разница в параметрах. Также очковые линзы асферического дизайна могут иметь еще один весомый недостаток. Основным недостатком считается они будут изменять не только размеры предметов, но и расстояния до них. Многие люди, которые избавились от очков и перешли использовать асферические контактные линзы сообщаю о том, что, когда смотрят в зеркало, тогда картинка будет выглядеть совершенно иначе. Степень искажения может зависеть от разнообразных факторов:

  1. Расстояние между глазном и прибором.
  2. Преломляющая сила прибора.

Приборы высоких рефракций также могут искажать и размер глаза человека. Отличительной способностью можно считать то, что параллельный пучок будет находиться строго в одной точке. Простыми словами: картинка, которая будет попадать на края может искажаться.

Асферический и сферичиский дизайн

Линзы сферические и асферические – в чем разница

Сферические контактные линзы способны просто корректировать искажения только низких порядков. Исправить высшие порядки с помощью подобной линзы будет просто невозможно. Сферические очки и линзы практически ничем не отличаются. Единственным отличием считается то, что линзы позволяют корректировать и периферическое зрение.

Асферические контактные линзы отличаются своей удобной конструкцией. Они могут отличаться благодаря своей конструкции. Линза будет иметь форму эллипса. Благодаря этому радиус кривизны от центра к краю может увеличиваться. После использования подобных линз можно значительно повысить контрастность линзы. Если вам будет интересно, тогда можете прочесть про астигматические линзы.

Преимущества линз асферического дизайна

  1. Асферические приборы позволяют исправить периферическое зрение. Благодаря этому качество изображения может повыситься.
  2. Искажение окружающих предметов можно минимизировать.
  3. Приборы достаточно тонкие и поэтому период привыкания не потребуется.
  4. Поле зрения будет достаточно широким.

Важно знать! Асферические модели будут просто незаменимы в ночной период времени. Они могут бороться с искажениями, как высшего, так и низшего порядка.

Если детально изучить отзывы, тогда можно понять, что усталость глаз не будет ощущаться, даже после сильной и длительной нагрузки.

Особенности подбора

Сначала, вам необходимо пройти обследование у офтальмолога. Именно он сможет определить полезно использовать такие линзы или нет. Специалист благодаря специальному оборудованию сможет определить все технические характеристики.

Степень аберрации у человека может значительно отклоняться от среднего показателя. Именно поэтому конечный результат может быть не лучше, а еще хуже.

Цены и производители асферических линз

Цена на асферические линзы может быть достаточно разнообразной. Все будет зависеть от качества. Ниже мы представили вашему вниманию таблицу, в которой указан не только перечень производителей, но и цен.

Теперь вы точно знаете, что асферические контактные линзы могут обладать рядом определенных достоинств. Основным их преимуществам можно отнести минимальные искажения картинки. Надеемся, что эта информация была полезной и интересной.

Читайте также: как снять контактные линзы с глаз.

В каких случаях требуется имплантация искусственного хрусталика?

ИОЛы используются в современной офтальмологии в том случае, если естественный хрусталик по каким-либо причинам оказался более неспособен к выполнению своих стандартных функций.

Чаще всего интраокулярная линза используется у больных с катарактой. Дело в том, что при оперативном вмешательстве по поводу этой болезни натуральное анатомическое образование часто мутнеет, перестает выполнять свои стандартные функции. В таком случае именно интраокулярные линзы помогут скорректировать такие патологии, как:

  • астигматизм;
  • близорукость;
  • дальнозоркость.

Катаракта, из-за которой природный хрусталик утратил свою функциональность – это не единственное показание. Офтальмологические приспособления подобного типа также используются, если по каким-либо причинам пациенту нельзя выполнять лазерную коррекцию. В основном это происходит в возрасте 50-60 лет, когда утрачивается природная аккомодация глаза. Пациенту даже после постановки импланта придется носить очки.

Если аккомодация находится в рабочем состоянии, имплантацию также можно провести, и тогда пациент возвращает себе способность видеть предметы, независимо от расстояния до них.

Устройство ИОЛ

Стандартные интраокулярные линзы, применяемые в современной практике для восстановления зрения, имеют два основных элемента.

Оптическая составляющая – это непосредственно сама линза, для производства которой обычно используется специальный прозрачный материал. Эта часть обычно контактирует с живыми тканями глаза, потому делается из качественных элементов, которые с минимальной вероятность вызовут негативные реакции. Дополнительно на оптической составляющей всегда имеется дефракционная зона, благодаря которой и достигается четкость зрения.

Вторая составляющая – опорная. Благодаря ей происходит надежная фиксация линзы в глазу.

Срок годности современных ИОЛов, независимо от материала, совершенно неограничен. Они в течение длительного времени могут служить человеку без замен. Главное – соблюдать рекомендации врача относительно ухода за глазами.

Виды

Сегодня выделяют разные виды ИОЛ. В первую очередь деление происходит по критерию жесткости. Выделяют:

  • Жесткие импланты. Интраокулярные линзы жесткого типа имеют постоянную форму. Их невозможно сдавить или иначе изменить их конфигурацию для наиболее оптимального вживления в глаз. В связи с этим в ходе операции офтальмолог вынужден выполнять довольно крупный разрез, который затем заживляется с помощью наложения швов. Минусом подобных линз является более долгий восстановительный период.
  • Мягкие импланты. В офтальмологии на сегодняшний день наибольшую популярность получил искусственный хрусталик глаза, который изготавливается из специального полимера. Подобный хрусталик в ходе операции можно подвергнуть различным конфигурационным изменениям, не нанеся конструкции вреда. Благодаря этой особенности не требуется совершать больших, травматичных разрезов. Такая интраокулярная линза погружается в глаз в сложенном виде. Ее разворачивание и фиксация происходят самостоятельно, без помощи врача.

Довольно большой классификацией представлено деление интраокулярных линз на несколько типов в зависимости от того, как они действуют на работу зрительного нерва.

Трифокальные

Трифокальный тип – это искусственный хрусталик, который подойдет людям, не желающим после вмешательства носить очки. Благодаря уникальной конструкции такой имплант способен обеспечивать довольно плавный перевод фокуса, позволяя пациенту видеть объекты на близких, средних и дальних дистанциях. Интересно, что действие трифокальных линз часто дополняется асферическими свойствами. Это помогает в коррекции возникающих сферических искажений, добавляя пациенту контрастной чувствительности.

Аккомодирующие

Оптическая конструкция аккомодирующего типа считается на сегодняшний день одним из наиболее функциональных вариантов. Этот тип искусственных хрусталиков отлично имитирует работу настоящего органа, восстанавливая зрение пациента, независимо от дистанции, на которой от него расположен предмет.

Аккомодирующий тип конструкции, как считают офтальмологи, имеет наиболее приближенный к естественному вид. Благодаря этому даже после операции у мышечных и нервных структур глаза появляется возможность работать, как и прежде.

С помощью аккомодирующего типа линз пациента можно избавить не только от катаракты, но и от возрастной дальнозоркости, которую также называют пресбиопией. Подобные конструкции обеспечивают хорошее зрение независимо от возраста и расстояния.

Мультифокальные

Искусственный хрусталик для глаза мультифокального типа – это вариант, который часто выбирается пациентами с возрастными изменениями зрения. Его в основном устанавливают людям, чей возраст перешел за отметку в 50 лет.

С помощью мультифокальных линз удается добиться нормальной фокусировки зрения на нескольких расстояниях. Это позволяет после операции или ограничить ношение очков, или полностью избавиться от них. Как гласит статистика, около 80% пациентов с подобными имплантами отказались в итоге от применения очков.

Торические

Ранее одним из самых сложных заболеваний офтальмологического типа считалась катаракта в сочетании с астигматизмом. Пациентам, переносившим ранее оперативные вмешательства по поводу катаракты, приходилось носить специальные цилиндрические очки, позволяющие корректировать астигматизм. Сегодня, когда есть торические линзы, необходимость использовать очки отпадает даже при сочетанной патологии.

Конструкция и материал торических линз разработаны с тем расчетом, чтобы значительно повысить преломляющую силу и обеспечить за счет этого увеличение остроты зрения. Получается, оптическое приспособление не только заменяет собой нерабочий хрусталик, но и корректирует астигматизм.

Асферические

В практике глазного врача раньше часто встречалась такая проблема, как сферические аберрации. Под этой патологией понимали возникновение засветов, ореолов, отблесков, которые сильно снижали качество зрения даже после операции. Особенно выражены патологии были в темное время суток, а также в сумерках.

Сегодня появилась возможность корректировать сферические аберрации, используя асферические линзы. Эти приспособления обладают уникальной конструкцией, которая помогает собирать свет не в нескольких точках, а только в одной.

С желтым фильтром

Большинство линз нового поколения, независимо от их основной разновидности, снабжены специальным желтым фильтром. Его добавление обусловлено требованиями физиологии. Дело в том, что в норме сам хрусталик человека выполняет защитные функции, не позволяя роговице травмироваться при контакте с лучами различного происхождения. Помогает ему в этом желтый фильтр. А, удаляя хрусталик, хирург удаляет и фильтр, на смену которому вместе с имплантом приходит и искусственный фильтр.

Моноблок

Моноблок – еще одна современная конструкция, выполняемая с помощью специальных биологических материалов. Биоактивность материалов предотвращает негативные реакции со стороны среды глаза на имплант, снижая риск развития катаракты и других возможных осложнений. Также благодаря моноблоку появилась возможность сделать операционные разрезы еще меньше.

Интраокулярные линзы – непростые приспособления, выбор которых нельзя назвать простым делом. Пациентам рекомендуется соблюдение следующих правил:

  • желательно отдавать предпочтение оптике с фильтром, так как она защитит роговицу и сетчатку от негативного излучения;
  • нужно обращать внимание на материал изготовления ИОЛов, он должен быть максимально близок к натуральному;
  • стоит отдать предпочтение конструкциям с асферическими свойствами, чтобы заранее избежать нежелательных искажений;
  • на упаковке должна присутствовать надпись о том, что изделие обрабатывалось с расчетом получить идеальную гладкость – это говорит о том, что оно будет легко размещаться в глазу.

Производители

Интраокулярная линза – популярный на современном медицинском рынке продукт. Их производством занимается несколько фирм. Наиболее популярны:

  • Alcon. Компания производит изделия с минимальной толщиной. При этом используются гидрофобные материалы.
  • AcrySof ReSTOR. Их изделия также обладают очень маленькой толщиной, что позволяет выполнять наименее травматичные имплантационные операции.
  • AcrySof IQ. Эта фирма использует для изготовления своих моделей синие светофильтры, что служит отличной защитой для глаз.
  • Rumex International. Изделия этой фирмы легче всего растягивают капсульный мешок, благодаря чему их легко располагать в глазу.

Естественно, при выборе ИОЛ стоит опираться на рекомендации лечащего офтальмолога. Самостоятельное приобретение изделий подобного рода не рекомендуется.

Полезное видео про интраокулярные линзы



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Использование страдательных конструкций Использование страдательных конструкций