Мировой океан и его ресурсы. Исследования мирового океана

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Исследование, вернее недостаток его - одна из проблем Мирового океана. Знание может помочь человечеству решить множество задач, связанных как с использованием, так и с охраной океанских вод.

Человек стал осваивать Океан с незапамятных времён. Еще Александр Македонский (356 - 323 годы до н.э.) погружался в море в большом стеклянном сосуде, а в своих военных операциях прибегал к помощи ныряльщиков (например, при осаде Тира в 334 году до н.э.). Самые ранние упоминания о водолазных аппаратах относятся к 16 веку. Такие аппараты представляли собой лишенные дна колокола, в которые по трубам поступал воздух. Первый колокол, вмещавший в себя более одного водолаза был построен в 1690 году Эдмондом Галлеем (1656 - 1742 г.г.). Хорошо известный нам водолазный костюм с металлическим шлемом, сконструированный англичанином А.Зибе, еще в 1837 году широко использовался в подводных работах на глубине до 60 метров. В 1943 году Жак Ив Кусто и Эмиль Ганьян изобрели акваланг, который сделал водолаза значительно подвижнее.

В 1620 году Корнелиус Ван Дреббель построил первую подводную лодку, приводимая в движение двадцатью гребцами, она плавала по Темзе на глубине 5 метров. С 60-х годов нашего века подводные суда стали применяться для наблюдений и строительства; с 1973 года используются при подводной добыче нефти и газа для осмотра трубопроводов, ремонта и обслуживания платформ. Серьезные попытки исследовать большие глубины были начаты в 1930 году, когда у Бермудских островов Отис Бартон и Уильям Биб в батисфере - стальном шаре, опускаемом с корабля на тросе, погрузились до глубины 425 метров. 23 января 1960 года Жак Пиккар и Дональд Уолш в батискафе “ Триест" достигли глубины 10917 метров на дне впадины Челленджер в Марианском желобе.

Несмотря на то, что мореплавание имеет почти такую же длинную историю, как и сам человек, настоящие разносторонние исследования Океана начались только двести лет назад. Большой вклад внесли в океанографию тех времён Беринг, Лисянский, Беллинсгаузен, Крузенштерн, Лазарев, Литке, которые кроме чисто географических открытий, проводили также биологические изыскания, собирая научные коллекции, изучая растительный и животный мир Океана. В 1872-1876 годах английское судно «Челленджер» осуществило первую океанографическую экспедицию, которая принесла такое количество новых сведений, что над их обработкой пришлось потрудиться 70 ученым в течение 20 лет. Поистине этапным для мировой океанографии стало путешествие адмирала Макарова в 1886-1889 годах на корабле «Витязь». На фронтоне океанографического института в Монако «Витязь» назван среди десяти самых известных океанографических кораблей мира.

В ХХ веке, веке техники и электроники, подводные экспедиции получили новый импульс. Ведутся акустические, гидрологические, гидрохимические, геофизические, метеорологические и биологические наблюдения и исследования. Появились специальные научно-исследовательские суда, автономные буйковые станции, подводные лаборатории, разнообразнейшие батискафы и подлодки. Океан изучается как изнутри - на больших и малых глубинах, так и из космоса. Одной из самых известных программ изучения океана в ХХ веке были экспедиции Тура Хейердала. Эти международные экипажи построили по рисункам, найденным в Древнем Египте суда из тростника и папируса. Связав их особым способом, они совершили длительные морские переходы на кораблях" Ра-1 " и " Ра-2 ", доказав, что древние египтяне могли плавать на большие расстояния. Жак Ив Кусто со своей командой вносит огромный вклад в дело изучения океана. Его отчеты мы можем видеть по телевизору, а ученые пользуются его пробами и лабораторными исследованиями.

Интересы естествознания, использование минеральных ресурсов, прогноз стихийных бедствий, да и просто погоды, проблема искусственного регулирования биологической продуктивности требуют постоянного и обширного изучения Океана. Чтобы беречь этот резервуар жизни на планете, также и даже более чем необходимо его знать.

ЗАКЛЮЧЕНИЕ

Последствия, к которым ведёт расточительное, небережное отношение человечества к Океану, ужасающи. Уничтожение планктона, рыб и других обитателей океанских вод - далеко не всё. Ущерб может быть гораздо большим. Ведь у Мирового океана имеются общепланетарные функции: он является мощным регулятором влагооборота и теплового режима Земли, а также циркуляции её атмосферы. Загрязнения способны вызвать весьма существенные изменения всех этих характеристик, жизненно важных для режима климата и погоды на всей планете. Симптомы таких изменений наблюдаются уже сегодня. Повторяются жестокие засухи и наводнения, появляются разрушительные ураганы, сильнейшие морозы приходят даже в тропики, где их отроду не бывало. Разумеется, пока нельзя даже приблизительно оценить зависимость подобного ущерба от степени загрязненности Мирового океана, однако взаимосвязь, несомненно, существует. Как бы там ни было, охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество.

Еще статьи по теме

Глобальные проблемы человечества загрязнение водной среды
В настоящее время проблема загрязнения водных объектов (рек, озер, морей, грунтовых вод и т.д.) является наиболее актуальной, т.к. всем известно – выражение «вода - это жизнь». Без воды человек не может прожить более трех суток, но д...

Способы утилизации промышленных и бытовых отходов
По оценке американских экспертов в области охраны природы, проблема мусора в последние годы выдвинулась среди прочих экологических проблем на первое место. Говоря об озоновых дырах, атомных электростанциях и глобальном потеплении, мы н...

Федеральная Целевая Программа

Современное состояние проблемы изучения и освоения мирового океана в рамках Федеральной целевой программы «Мировой океан»

С античных времен и по настоящее время прогресс в изучении и освоении Мирового океана определяется глубиной научных идей и объемом финансовых затрат. Морская активность является наиболее выпуклой формой демонстрации технических достижений, предопределяющих перспективы экономического развития отдельных стран, регионов и всего мирового сообщества. Океаны и моря формируют климат планеты, выделяют места наиболее комфортного пребывания человека, географию промышленных зон и заповедных территорий. Экономические факторы в сочетании с естественным стремлением человека "к морю" создают условия развития или деградации отдельных стран и целых континентов.

Появление первых примитивных навигационных инструментов, глобусов и карт, научные основы создания которых разрабатывались международным сообществом ученых, образовавших “ Junta Mathematicus ” на пустынной косе Сангреш, позволили разоренной войной средневековой Португалии открыть новые морские пути, освоить огромные территории, способы доставки дорогих товаров (пряностей, драгоценных камней, слоновой кости) в Европу и в исторически короткий срок войти в разряд процветающих стран.

Объединенные взаимным соревнованием королевства Испании, Италии, Португалии создали новые надежно управляемые суда (каравеллы), с помощью которых в орбиту международных экономических отношений был вовлечен ранее изолированный огромный континент. Плодами этих трансконтинентальных связей (томатами, картофелем, подсолнечником и др.) сегодня пользуется каждый житель Земли.

Более чем двухсотлетние, удивительно целеустремленные и настойчивые, усилия ученых и инженеров Англии способствовали созданию нового класса надежных и комфортабельных судов, которые несколько столетий служили скелетом, сухожилиями, мышцами, артериями, кровью и ударным кулаком огромной империи, в которой действительно никогда не заходило Солнце. Понимание важности освоения океанических процессов нашло отражение в известных строках гимна Англии: “ Britain , rules the waves …”

Развитая в США после второй Мировой войны система грантов, фактически реализующая на новом уровне классическую фордовско-тейлоровскую конвейерную систему масспроизводства, инвариантную по отношению к персональным качествам исполнителей, позволила объединить общемировой интеллектуально – технологический потенциал и добиться новых значимых успехов в изучении и освоении Мирового океана. Следует отметить высокую степень централизации и согласованности в проведении дорогостоящих исследований океана как на государственном, так и на межгосударственных уровнях ( IOC , UNESCO ).

Океан стали бороздить десятки океанографических судов, появились глобальные научные проекты ( WOCE – World Ocean Circulation Experiment ), международные конференции стали собирать тысячи участников и проходить в обстановке всеобщего энтузиазма и приподнятости. Прецизионные акустические, гравиметрические и магнитометрические инструменты позволили утроить число подводных гор и открыть единую систему подводных срединно-океанических хребтов протяженностью более 60 000 км , зафиксировать удивительные регулярности в глобальных картинах магнитных и гравитационных аномалий, уточнить картину течений и структур водных масс.

В истории России выделяются несколько периодов выраженной морской активности. В начале XVIII века более чем столетние попытки выхода России к коротким морским коммуникациям были успешно реализованы императором Петром I . В короткое время после открытия в 1701 году “Школы математических и навигацких хитросно искусств учения ”, был построен полноценный флот, позволивший Петру I объединить под своим командованием флоты многих европейских государств, включая Англию и Данию.

Приглашенный преподавать математику в Школу “худородный” Леонтий Федорович, получивший от Петра I фамилию “Магницкий – за ясность ума и доброту, как магнит притягивающую к нему себе людские сердца”, прославился энциклопедической “Арифметикой” ( 1703 г .) и стал основателем знаменитой династии ученых и педагогов.

После смерти императора морская активность стала угасать и даже выдающийся математик Л. Эйлер, не получив звания лейтенанта флота ее императорского величества Елизаветы Петровны, на 25 лет покинул Россию, не порывая впрочем связей с Академией.

Второй расцвет морской активности России наступил в начале XIX века, когда корабли под российским флагом открывали Антарктиду, осваивали Камчатку, Аляску и Калифорнию. Прогресс во второй половине XIX века ассоциируется с именами великого Д.И. Менделеева, по предложению которого в Англии был куплен бассейн У. Фруда, послуживший фундаментом обширной российской школы судостроении, и адмирала С.О. Макарова. Корвет “Витязь” под его руководством настолько прославился в изучении Тихого океана, что был удостоен чести быть указанным на фронтоне Океанографического музея Монако наряду с “Вегой” Норденшельда, “Фрамом” Фритьофа Нансена и другими великими в своих достижениях судами.

Важность освоения Севера неоднократно подчеркивалась М.В. Ломоносовым, крылатая фраза которого "Богатство России будет прирастать Сибирью и Северным ледовитым океаном" часто цитируется только наполовину. Д.И. Менделеев и С.О. Макаров объединили свои усилия в привлечении общественного внимания к изучению Арктики. Выдвинутый ими лозунг – “К Северному полюсу – напролом” стимулировал более чем столетние усилия по строительству судов ледового класса. Постепенно паровые, дизельные, а в последние годы и атомные ледоколы стали настолько надежными и эффективными, что начали использоваться даже для организации туристических рейсов в точку, которая впервые была достигнута менее 100 лет назад. (К слову сказать, открытие Северного полюса Р. Пири не было подтверждено им самим в недавно опубликованных дневниках, да и оспаривалось с самого начала).

Этот регион не перестает удивлять своими возможностями. В последние годы ледовитость Арктики уменьшилась, и очередной рейс 2001 года научно-исследовательского судна в ее центральную часть позволил открыть несколько действующих подводных вулканов, обширные поля гидротермальных источников, населенные ранее неизвестными науке биосообществами, обширные месторождения нефти, газа и газогидратов (ледышек, насыщенных метаном и другими горючими газами, возможно основной будущий энергоноситель). Северные моря, сохраняя свои рыбопромысловые возможности, становятся все более значимым источником минерального сырья и энергоносителей. Для практического освоения технологий жизни и работы на севере Норвегия открыла филиал международного университета на Шпицбергене, в числе студентов которого появляются и россияне.

Развитие подводного атомного флота инициировало очередной взрыв интереса к изучению глубокого океана в 50 и 60- е годы прошлого столетия. Для обеспечения скрытности и безопасности эксплуатации возможно самых дорогостоящих технических объектов современности потребовалось развитие акустики и оптики океана, теории струй, волн и турбулентности.

В 70-е годы наряду с традиционными контактными инструментами, разработанными для достаточно точного определения параметров среды в отдельной "точке" местоположения судна, буя или донной станции, стали появляться дистанционные – акустические, оптические, радиолокационные позволяющие "мгновенно" регистрировать пространственное распределение возмущений. Акустические томографы, загоризонтные и самолетные радиолокаторы, альтиметры, гравиметры, магнитометры, позволяющие карту выбранного поля, существенно изменили представления о геометрии поверхности океана, которая перестала быть “простой частью геоида”, а стала индикатором топографии дна океана, динамики и структуры протекающих процессов.

Постоянно функционирующие системы спутников для определения координат и скоростей движения объектов – GPS (США) и ГЛОНАСС (Россия), гидрометеоусловий ( Topex - Poseidon , “Метеор”), телевидения и связи, обнаружения и разведки активности военных объектов, научных исследований) позволили получить огромное количество данных о движении Земли в целом (ось которой, а следовательно и широты, непрерывно смещается, в наш век к северу), отдельных материков (со скоростями в диапазонах 1-3 и 10- 15 см в год), Солнечной постоянной (которая на самом деле является переменной в силу изменчивости структуры процессов в его толще), динамике атмосферы, о волнах и ветре, приливах, течениях, вихрях, фронтах и многих других параметрах, включая химические и биологические.

Быстро прогрессирующие семейства компьютеров позволили оперативно преобразовывать огромные массивы наблюдательных данных в удобную для восприятия и последующего анализа форму, создавать атласы вихрей, течений, волн и ветров в океане, включать в существующие математические модели оценку состояния и прогнозировать эволюцию природных систем.

Казалось, чуть-чуть и будет решена вечная проблема “прогноза погоды и оценки изменчивости климата”. Однако, как и сто пятьдесят лет назад, когда затонувший Балаклаве англо-французский флот вынудил создать национальные службы прогноза погоды, так и сейчас, ураганы, тайфуны, морозы, шторма и другие погодные аномалии все еще приходят неожиданно и совсем не туда, где ожидаются. Возникла парадоксальная ситуации – появление новых глобальных инструментов, повышение точности отдельных измерений и увеличение их объема не способствовали повышению надежности прогноза эволюции природных систем, выделению антропогенных факторов, снижению экономического ущерба от природных катастроф.

Возникла необходимость формирования нового научного подхода к изучению процессов в окружающей среде и освоению Мирового океана. Ситуация усугублялась очевидной деградацией морских компонент мировой экономики – падением объема морских перевозок, экологическими катастрофами, вызванными чрезмерным осушением прибрежных болот и соленых лагун, авариями нефтяных платформ и крупных танкеров, резким падением объема и качества добываемых в океане рыб и морепродуктов. Переоценка роли ядерного оружия привело к резкому ограничению развития подводного флота.

Необходимость перестройки современного государственного подхода к изучению Мирового океана была впервые отмечена в письме группы выдающихся российских ученых, следствием которого стали поручения Президента России Б.Н. Ельцина (от 7 декабря 1995 г . и 1 марта 1996 г .) и Председательства Правительства России В.С. Черномырдина (от 16 декабря 1995 г . и 6 марта 1996 г .) о подготовке Концепции Федеральной целевой программы “Мировой океан”. В ее подготовке приняли участие 45 федеральных и региональных учреждений, министерств и ведомств. Концепция была одобрена Указом Президента Российской Федерации 17 января 1997 года № 11 (всего через несколько дней после приступа тяжелой болезни) и стала надежным базисом развития морских исследований в России. Постановлением Правительства Российской Федерации от 10 августа 1998 г . № 919, подписанным его Председателем С. В. Кириенко за несколько дней до злополучного дефолта, Программа “Мировой океан” была утверждена и начала финансироваться.

Программа сегодня обеспечивает проведение глубоких исследований океанов и морей. Стоимость годового этапа отдельных исследовательских проектов подпрограммы “Исследования природы Мирового океана” достигает 4 млн. руб. (130 000 у. е.), что сопоставимо с международными стандартами финансирования и позволяет проводить и экспериментальные, и теоретические работы. На втором этапе, который начнется в 2003 году, предусматривается обновление технических средств изучения океана и, следовательно, увеличение объема финансирования.

Вслед за Россией, к ревизии своей морской политики приступили и другие промышленно-развитые страны. Особенно серьезный характер эта работа приняла в США, где одновременно были созданы специальные Рабочие группы в Конгрессе, Национальной академии наук и администрации Президента. Для координации практических работ создан Межотраслевой комитет по морским наукам и технологиям.

В чем же причина такого огромного интереса к Мировому океану? Просто он остается последним доступным резервом интеллектуального и экономического развития человечества.

Вначале рост благополучия обеспечивали географические открытия, обеспечивающие новые товары, расширение рынков труда и сбыта избыточной продукции. Затем стали эксплуатироваться биологические (рыба и морепродукты) и коммуникационные ресурсы (перевозки товаров и людей, передача информации с помощью подводных телеграфных, затем телефонных, а сейчас оптоволоконных кабелей). Далее стали извлекаться полезные ископаемые.

Развитие морской добычи нефти и газа позволило Англии и Норвегии не только решить собственные экономические проблемы, но и в исторически короткий промежуток времени перейти из группы второразрядных в немногочисленный ряд процветающих стран. Необходимость бесконфликтного дележа потенциальных богатств океана стимулировала развитие морского права, привела к созданию исключительных экономических зон, признанию глубокого океана “ всеобщим достоянием человечества” (что существенно дополняет старинный принцип “ свободы мореходства”), созданию “морских охраняемых территорий”.

В настоящее время все большее значение океан приобретает как источник морепродуктов и нового генетического материала, начиная с сохранившихся с древнейших времен видов бактерий и кончая странными биосообществами, населяющими районы глубоководных гидротермальных источников. Индустрия аквакультуры является настолько быстро развивающейся отраслью, источником такого мощного экономического благополучия, что наводит на мысль о смене технической (машинной) цивилизации на менее энергозатратную биологическую.

Граница суши и океана становится все более притягательной для постоянного пребывания и проживания, доля населения прибрежных зон неуклонно растет.

В силу своей обширности и некомфортности для прямого нахождения человека (темнота, низкие температуры, высокие давления), океан продолжает оставаться “ terra incognita ”, удивляющей возможностью совершения новых открытий даже в таких традиционных разделах науки, как география, физика, химия, биология.

Так открытие тонкой структуры океана – долговременного существования протяженных слоев (ламин) и разделяющих их высокоградиентных прослоек, совершенное во время совместной экспедиции двумя членами Академии наук СССР – почетным членом Генри Стоммелом (США) и членом-корреспондентом АН СССР К.Н. Федоровым (ИО РАН им. П.П. Ширшова) стимулировало новый виток интенсивных исследований физических процессов в стратифицированных вращающихся средах, который продолжается и сегодня.

Его следствием стали “точные” модели природных процессов, позволяющие не только надежно рассчитывать параметры отдельных природных процессов, но и влиять на их течение. Для их дальнейшего совершенствования в равной степени необходимы наблюдения в природных условиях и экспериментальные данные, получаемые в контролируемых лабораторных условиях с применением всего арсенала средств оптических, акустических и контактных измерений. Такие установки создаются во многих странах, успешно работают они и в России, в Институте проблем механики РАН, где находится филиал кафедры физики моря и вод суши Физического факультета.

Адекватность перехода от маломасштабных лабораторных установок к реальным природным системам обеспечивается применением нового поколения математических моделей течений и волн. Для их создания используется синтез методов теории непрерывных и дискретных групп преобразований, дифференциальных форм, дифференциальной геометрии, теории погружения, асимптотических вычислений. Некоторые из методов разработаны достаточно давно, но их активное использование сдерживалось невозможностью проведения трудоемких аналитических вычислений, которые сейчас успешно выполняет компьютер. Достоинством является возможность проверки математических выводов на реальных процессах, протекающих в человеческих масштабах времени и пространства. В дальнейшем развитые подходы, как это уже неоднократно было в истории науки, перекочевывают в теорию колебаний, электродинамику, теорию поля и элементарных частиц.

Романтические морские измерения, наряду со спутниками, судами, заякоренными буями, осуществляют более 3000 свободно дрейфующих буев, раз в две недели всплывающих на поверхность с глубин 300 – 2000 м и передающих информацию на спутник связи. Для их эксплуатации необходимо развитие представлений о взаимодействии тел с неоднородной средой, где, как оказалось, важную роль играют удивительные и высокоорганизованные “автокумулятивные струи” видимые в нижней части рис. 1, 2.

Одной их проблем является создание новых высокоразрешающих датчиков физических параметров, позволяющих регистрировать регулярные (волны, вихри, струи) и сингулярные элементы течений, примеры которых видны на рис. 3,4. Интересной задачей является создание автономных подводных обсерваторий с гибридной оперативной связью – по акустическому каналу с надводным буем и далее со спутником. И, наконец, вершина технического творчества – автономные подводные аппараты, экономные и совершенные с большим запасом хода и в чистой воде и подо льдами Арктики. Вопрос стоит острейший – приведет ли изменение климата к таянию арктических льдов, которые по некоторым норвежско-американским сценариям сохранятся только около полюса, или система обратных солнечно-земных и атмосферно-гидросферно-литосферных связей будет поддерживать существующее положение вещей?

Этим вопросом, как неявным призывом к занятиям физической океанографией, хочется закончить повествование. Впрочем, необходимо и предостеречь от излишнего оптимизма. Для этой формы человеческой активности характерен большой временной разрыв между приложением усилий и получением плода их общественного признания. Впрочем, как справедливо заметил К. И. Чуковский – “В России надо жить долго. Многое увидишь”.

Профессор кафедры физики моря и вод суши

Физического факультета МГУ им. М.В. Ломоносова

Ю.Д.Чашечкин

Рис. 1. Теневая фотография сферы, колеблющейся возле уровня нейтральной плавучести (метод щель - нож)

Рис. 2. Теневая фотография свободно колеблющейся сферы

(метод щель - нить)

Рис. 3. Теневая картина течения около горизонтального цилиндра, начинающего горизонтальное движение с равномерной скоростью слева направо. НЕНАДО ЭТОТ РИСУНОК

a) б)

Рис. 4. Картина конвективных течений над точечным источником

тепла в слабо – а), и сильно – б) стратифицированной жидкости.

Большую роль в изучении океана играют экспедиционные суда, оборудованные специальной аппаратурой, в частности для изучения океанического дна.

В Северном Ледовитом океане наблюдения за соленостью и температурой воды, направлением и скоростью течений, глубиной океана ученые ведут с дрейфующих станций.

Изучение глубин Мирового океана осуществляется с помощью разнообразных подводных аппаратов: батискафов, подводных лодок и т.п. Наблюдения за океаническими течениями, волнами и дрейфующими льдами ведутся также из космоса.

Загрязнения океанов

Космическая съемка Земли показывает, что 1/3 всей поверхности океана покрыта масляной нефтяной пленкой. Наибольшему загрязнению подвергается Тихий океан, в особенности у берегов Японии и США, где расположены крупные города и промышленные районы.

Признаки загрязнения вод и морских организмов промышленными отходами обнаружены даже у берегов Антарктиды. В крови пингвинов был обнаружен ядохимикат, вынесенный с полей через реки и моря в океан. Там он попал в организм рыб, которыми питаются пингвины.

Международные соглашения об охране вод океана призывают разумно использовать его богатства и охранять его неповторимую природу. В первую очередь это необходимо самому человеку.


Воды суши

Воды суши – материковые воды – часть водной оболочки.


На суше имеются пять типов скоплений воды : подземные воды, реки, озера, ледники, болота. Вода также присутствует в почве.

Объем всех поверхностных вод суши вместе с ледниками составляет около 25 млн км 3 , т.е. в 55 раз меньше объема океана. В озерах сосредоточено около 280 тыс. км 3 воды, запасы почвенной влаги – 85 тыс. км 3 ; в реках – 1,2 тыс. км 3 .

По В. И. Вернадскому , в земной коре содержится 1,3 млрд км 3 воды, но значительная ее часть химически связана с минералами.

Пресная вода гидросферы – источник жизни на Земле. Она находится в реках, озерах, водохранилищах, ключах, родниках, подземных источниках, ледниках.

Подземные воды

Подземные воды - это воды, находящиеся в порах, пустотах и трещинах горных пород в верхней части земной коры (до глубины 12-16 км).Образуются в основном путем просачивания атмосферных осадков и талых вод, и их накопления в порах, трещинах и пустотах горных пород. Подземные воды характеризуются различным химическим составом. По степени минерализации они могут быть пресными, таки рассолами, содержащими более 35г/л солей.

Подземные воды находятся в почве и горных породах верхней части земной коры.

Условия образования: достаточное количество атмосферных осадков, способность горных пород пропускать воду.

По отношению к воде различают водопроницаемые (песок, гравий), водонепроницаемые (глины, мерзлота) и растворимые (известняк, поваренная соль) породы . Вода легко просачивается через толщи песка, гравия, гальки. Пласты, состоящие из этих пород, называются водопроницаемыми . Пласты горных пород, которые не пропускают воду, называются водоупорными ; они состоят из глины, гранита, песчаника, глинистого сланца.

Так как верхняя часть земной коры имеет слоистое строение и слои могут состоять как из водоупорных, так и водопроницаемых пород, то подземные воды залегают слоями. Слои водопроницаемых пород, содержащие воду, называют водоносными .

По условиям залегания выделяют почвенные (залегают непосредственно у поверхности земли, в почве), грунтовые (залегают на первом водоупорном слое) и межпластовые (заключены между двумя водоупорными слоями) воды. Межпластовые воды питаются на участках, где нет верхнего водоупорного слоя; могут быть напорными, или артезианскими (если заполняют весь водоносный слой), и ненапорными.

Если водоносный слой находится между двумя водоупорными и эти пласты изогнуты в виде чаши, то вода в нижней части изгиба пластов будет находиться под напором. Из скважины, пробуренной в этом месте до водоносного слоя, начинает фонтанировать вода. Такие выходы подземной воды называются артезианскими колодцами .

Поверхность грунтовых вод называется уровнем грунтовых во. Высота уровня грунтовых вод зависит от многих факторов: 1) количества атмосферных осадков, 2) расчлененности местности, т.е. от количества и глубины оврагов и рек в данной местности, 3) от близости и полноводности рек и озер.

Если водонапорный пласт имеет наклон в ту или иную сторону, то вода начинает течь по нему в сторону наклона и обычно где-нибудь, чаще в долине, овраге, у подножия склона, выходит на поверхность. Место выхода грунтовой воды на поверхность называется источником , ключом или родником .

Естественные выходы подземных вод на поверхность - источники , могут быть холодными (до +20 ºС), теплыми (+20-37 ºС) и горячими (от +37 ºС).

В некоторых районах земного шара на поверхность земли выходит вода, содержащая повышенное количество растворенных веществ и газов. Такую воду называют минеральной .

Если грунтовые воды ежегодно пополняются и их количество остается неизменным, то межпластовые воды пополняются очень медленно, так как их накопление шло сотни и даже тысячи лет.

Реки

Река - естественный водный поток, текущий по одному и тому же месту постоянно или с перерывами.

Река – постоянный водный поток, текущий в разработанном им русле и питающийся главным образом атмосферными осадками.

Место начала реки - исток . Истоком служит озеро, болото, источник, бьющий из под земли родник, ледник. В высоких горах реки начинаются с ледников.

Если плыть по течению реки, то справа будет правый берег, а слева – левый.


Место, где река заканчивается, впадая в океан, море, озеро, - ее устье . Устья делят на дельты (много рукавов и протоков) и эстуарии (однорукавные). При впадении реки в море принесенный рекой песок, глина, гравий откладываются на дне, образуя дельту. Самую большую дельту в нашей стране имеет река Лена . Большие дельты также у рек Нил, Волга, Миссисипи.

Длина реки - расстояние от ее истока до устья. Одной из самых длинных рек считается – Нил (с Кагерой) – 6671 км, далее следует Янцзы – 6300 км.

Уклон реки - отношение разности высот двух пунктов к длине участка между ними.

Всякая река течет в понижении, которое тянется от истока реки до ее устья, - речной долине . Речная долина, состоит из русла, поймы и террас. Углубление в речной долине, по которому воды реки текут постоянно, называется руслом реки.

Во время розлива, чаще всего весной, когда тает снег, река выходит из берегов и затопляет пониженную часть речной долины – пойму .

Пойма – плоское, затопляемое во время половодья дно речной долины. Над поймой обычно поднимаются склоны долины, часто ступенчатой формы. Эти ступени называют террасами.

Террасы - повышенные части речной долины, не затапливаемые даже при наивысших уровнях воды в реке. Они возникают в результате размывающей деятельности реки (эрозии), вызванной понижением базиса эрозии.

Река вместе со всеми притоками, включая и реки, впадающие в притоки, образует речную систему . Название системы дается по названию реки. Все притоки несут воду в главную реку.

Территория, с которой река со своими притоками собирает воду, называется водосборным бассейном реки .

Бассейн реки – территория, с которой река со всеми притоками собирает воду.

Самая большая площадь бассейна у реки Амазонки в Южной Америке – свыше 7 млн км 2 .

Граница между бассейнами рек - водораздел .

Водораздел – линия раздела бассейнов двух рек или океанов. Обычно водоразделом служат какие -либо возвышенные пространства.

Территории материка, не имеющие стока в океан, называются бассейнами внутреннего стока . К ним относится, например, значительная часть Восточно-Европейской равнины в Евразии, по которой течет река Волга .

Все реки земного шара распределены между бассейнами четырех океанов.

Территорию, воды с которой стекают в тот или иной океан, называют бассейном данного океана.

Реки Африки принадлежат к бассейнам Атлантического (Нил, Конго, Нигер ) и Индийского (Замбези, Лимпопо ) океанов. Протянувшиеся вдоль западного побережья Южной Америки Анды служат водоразделом между бассейнами Атлантического и Тихого океанов . Все крупные реки Южной Америки несут свои воды в Атлантический океан . Это самая многоводная река мира – Амазонка , а также Парана и Ориноко .

Рельеф местности влияет на направление и характер течения реки. В зависимости от рельефа выделяют горные (быстрое течение, значительные уклоны, спрямленные глубокие долины) и равнинные реки (медленное течение, незначительные уклоны).

Горные реки, как правило, имеют стремительное, бурное течение. Они текут в узких скалистых долинах с крутыми склонами. Так, например, река Колорадо , берущая начало в Скалистых горах Северной Америки, образует Большой каньон – глубокую и узкую долину с отвесными берегами.

У равнинных рек, таких как Волга, Обь, Днепр , течение спокойное, довольно медленное, они сильно меандрируют, их долины не глубокие, но широкие, с хорошо развитой широкой плодородной поймой.

Мировой океан, покрывающий 71% поверхности Земли, поражает сложностью и разнообразием процессов, развивающихся в нем.

От поверхности до наибольших глубин воды океана находятся в непрерывном движении. Эти сложные движения воды от огромных по масштабу океанических течений до мельчайших вихрей возбуждаются приливообразующими силами и служат проявлением взаимодействия атмосферы и океана.

Водная масса океана в низких широтах накапливает тепло, полученное от солнца, и переносит это тепло в высокие широты. Перераспределение тепла, в свою очередь, возбуждает определенные атмосферные процессы. Так, в области сближения холодных и теплых течений в Северной Атлантике возникают мощные циклоны. Они достигают Европы и часто определяют погоду на всем ее пространстве до Урала.

Живая материя океана очень неравномерно распределяется по глубинам. В различных районах океана биомасса зависит от климатических условий и поступления солей азота и фосфора в поверхностные воды. В океане обитает великое множество растений и животных. От бактерий и одноклеточных зеленых водорослей фитопланктона до крупнейших на земле млекопитающих - китов, вес которых достигает 150 т. Все живые организмы составляют единую биологическую систему со своими законами существования и эволюции.

На дне океана очень медленно накапливаются рыхлые осадки. Это первая стадия образования осадочных горных пород. Для того, чтобы геологи, работающие на суше, могли правильно расшифровать геологическую историю той или иной территории, необходимо детально исследовать современные процессы осадкообразования.

Как выяснилось в последние десятилетия, земная кора под океаном обладает большой подвижностью. На дне океана образуются горные хребты, глубокие рифтовые долины, вулканические конусы. Словом, дно океана «живет» бурно, и нередко там возникают такие сильные землетрясения, что по поверхности океана стремительно бегут огромные опустошительные волны цунами.

Пытаясь исследовать природу океана - этой грандиозной сферы земли, ученые сталкиваются с определенными трудностями, для преодоления которых приходится применять методы всех основных естественных наук: физики, химии, математики, биологии, геологии. Обычно об океанологии говорят как о союзе различных наук, о федерации наук, объединенных предметом исследования. В таком подходе к изучению природы океана сказывается естественное стремление глубже проникнуть в его тайны и настоятельная необходимость глубоко и всесторонне знать характерные черты его природы.

Задачи эти очень сложны, и решать их приходится большим коллективом ученых и специалистов. Для того, чтобы представить, как именно это делается, рассмотрим три наиболее актуальных направления океанологической науки:

  • взаимодействие океана и атмосферы;
  • биологическая структура океана;
  • геология дна океана и его минеральные ресурсы.

Завершило многолетний неустанный труд старейшее советское научно-исследовательское судно «Витязь». Оно прибыло в Калининградский морской порт. Закончился 65-й прощальный рейс, продолжавшийся более двух месяцев.

Вот и сделана последняя «ходовая» запись в судовом журнале ветерана нашего океанологического флота, который за тридцать лет плаваний оставил за кормой более миллиона миль.

В беседе с корреспондентом «Правды» начальник экспедиции профессор А. А. Аксенов отметил, что 65-й рейс «Витязя», как и все предыдущие, оказался успешным. Во время комплексных исследований в глубоководных районах Средиземного моря и Атлантического океана получены новые научные данные, которые обогатят наши знания о жизни моря.

«Витязь» будет временно базироваться в Калининграде. Предполагается, что затем он станет базой для создания музея Мирового океана.

Несколько лет ученые многих стран работают по международному проекту ПИГАП (программа исследования глобальных атмосферных процессов). Цель этой работы - найти надежный метод прогноза погоды. Нет необходимости объяснять, насколько это важно. Можно будет заранее знать о засухе, о наводнениях, ливнях, сильных ветрах, жаре и холоде…

Пока никто не может дать такого прогноза. В чем главная трудность? Невозможно точно описать математическими уравнениями процессы взаимодействия океана и атмосферы.

Почти вся вода, выпадающая на сушу в виде дождя и слега, поступает в атмосферу с поверхности океана. Воды океана в районе тропиков сильно нагреваются, и течения разносят это тепло в высокие широты. Над океаном возникают огромные вихри - циклоны, которые определяют погоду на суше.

Океан - это кухня погоды… Но в океане очень мало постоянных станций наблюдения за погодой. Это немногочисленные острова и несколько автоматических плавучих станций.

Ученые пытаются построить математическую модель взаимодействия океана и атмосферы, но она должна быть реальной и точной, а для этого недостает многих данных о состоянии атмосферы над океаном.

Выход был найден в том, чтобы в небольшом районе океана очень точно и непрерывно проводить измерения с судов, с самолетов и метеорологических спутников. Такой международный эксперимент под названием «Тропекс» был проведен в тропической зоне Атлантического океана в 1974 г., и были получены очень важные данные для построения математической модели.

Необходимо знать всю систему течений в океане. Течения переносят тепло (и холод), питательные минеральные соли, нужные для развития жизни. Очень давно моряки начали собирать сведения о течениях. Это началось в XV- XVI вв., когда парусные суда вышли в открытый океан. В наше время все моряки знают, что существуют подробные карты поверхностных течений, и пользуются ими. Однако в последние 20-30 лет были сделаны открытия, которые показали, насколько неточны карты течений и насколько сложна общая картина циркуляции вод океана.

В экваториальной зоне Тихого и Атлантического океанов были исследованы, измерены и нанесены на карты мощные глубинные течения. Они известны как течение Кромвелла в Тихом и течение Ломоносова в Атлантическом океанах.

На западе Атлантического океана было открыто глубинное Антило-Гвианское противотечение. А под знаменитым Гольфстримом оказался Противогольфстрим.

В 1970 г. советские ученые провели очень интересное исследование. В тропической зоне Атлантического океана была установлена серия буйковых станций. На каждой станции непрерывно регистрировались течения на различных глубинах. Измерения длились полгода, причем периодически выполняли гидрологические съемки в районе измерений для получения данных об общей картине движения вод. После обработки и обобщения материалов измерений выяснилась очень важная общая закономерность. Оказывается, ранее существовавшее представление об относительно равномерном характере постоянного пассатного течения, которое возбуждается северными пассатными ветрами, не соответствует действительности. Не существует этого потока, этой громадной реки в жидких берегах.

В зоне пассатного течения движутся громадные вихри, водовороты, размером в десятки и даже сотни километров. Центр такого вихря перемещается со скоростью порядка 10 см/с, но на периферии вихря скорости течения значительно больше. Это открытие советских ученых было позднее подтверждено американскими исследователями, а в 1973 г. подобные вихри были прослежены в советских экспедициях, работавших на севере Тихого океана.

В 1977-1978 гг. был поставлен специальный эксперимент по изучению вихревой структуры течений в районе Саргассова моря на западе Северной Атлантики. На большом пространстве советские и американские экспедиции в течение 15 месяцев непрерывно вели измерения течений. Этот огромный материал еще не до конца проанализирован, но сама постановка задачи потребовала массовых специально поставленных измерений.

Особое внимание к так называемым синоптическим вихрям в океане вызвано тем, что именно вихри несут в себе наибольшую долю энергии течения. Следовательно, их тщательное изучение может существенно приблизить ученых к решению задачи о долгосрочном прогнозе погоды.

Еще одно интереснейшее явление, связанное с океанскими течениями, открыто в последние годы. К востоку и к западу от мощного океанского течения Гольфстрим обнаружены очень устойчивые так называемые ринги (кольца). Подобно реке, Гольфстрим имеет сильные изгибы (меандры). В некоторых местах меандры смыкаются, и образуется кольцо, в котором резко различается температура поды на периферии и в центре. Такие кольца прослежены также на периферии мощного течения Куросио в северо-западной части Тихого океана. Специальные наблюдения над рингами в Атлантическом и Тихом океанах показали, что эти образования очень устойчивы, сохраняют существенную разницу в температуре воды на периферии и внутри ринга в течение 2-3 лет.

В 1969 г. впервые были применены специальные зонды для непрерывного измерения температуры и солености на различных глубинах. До этого температуру измеряли ртутными термометрами в нескольких точках на разных глубинах и с этих же глубин в батометрах поднимали воду. Затем определяли соленость воды и наносили значения солености и температуры на график. Получали распределение этих свойств воды по глубине. Измерения в отдельных точках (дискретные) не позволяли даже предположить, что температура воды с глубиной изменяется так сложно, как это показали непрерывные измерения зондом.

Оказалось, что вся водная масса от поверхности до больших глубин разделяется на тонкие слои. Разница в температуре соседних горизонтальных слоев доходит до нескольких десятых градуса. Эти слои толщиной от нескольких сантиметров до нескольких метров существуют иногда несколько часов, иногда исчезают за несколько минут.

Первые измерения, сделанные в 1969 г., показались многим случайным явлением в океане. Не может быть, говорили скептики, чтобы могучие океанские волны и течения не перемешивали воду. Но в последующие годы, когда зондирование водной толщи точными приборами было проведено по всему океану, оказалось, что тонкослоистая структура водной толщи обнаруживается везде и всегда. Не вполне ясны причины этого явления. Пока объясняют его так: по той или иной причине в толще воды возникают многочисленные довольно четкие границы, разделяющие слои с различной плотностью. На границе двух слоев различной плотности очень легко возникают внутренние волны, которые перемешивают воду. В процессе разрушения внутренних волн возникают новые однородные слои, и границы слоев образуются на иных глубинах. Так этот процесс повторяется многократно, меняются глубина залегания и толщина слоев с резкими границами, но общий характер водной толщи остается неизменным.

В 1979 г. начался экспериментальный этап международной программы изучения глобальных атмосферных процессов (ПИГАП). Несколько десятков судов, автоматические наблюдательные станции в океане, специальные самолеты и метеорологические спутники, вся эта громада исследовательских средств работает на всем пространстве Мирового океана. Все участники этого эксперимента работают по единой согласованной программе для того, чтобы, сопоставляя материалы международного эксперимента, можно было построить глобальную модель состояния атмосферы и океана.

Бели принять во внимание, что кроме генеральной задачи - поиска надежного метода долгосрочного прогноза погоды, необходимо знать множество частных фактов, то общая задача физики океана представится весьма и весьма сложной: методы измерений, приборы, действие которых основано на применении самых современных электронных схем, довольно трудная обработка получаемой информации с обязательным использованием ЭВМ; построение весьма сложных и оригинальных математических моделей процессов, развивающихся в водной толще океана и на границе с атмосферой; постановка широких экспериментов в характерных районах океана. Таковы общие особенности современных исследований в области физики океана.

Особые трудности возникают при изучении живой материи в океане. Относительно недавно были получены необходимые материалы для общей характеристики биологической структуры океана.

Лишь в 1949 г. была открыта жизнь на глубинах более 6000 м. Позднее глубоководная фауна - фауна ультраабиссали оказалась интереснейшим объектом специального исследования. На таких глубинах условия существования очень стабильны в геологическом масштабе времени. Можно по сходству ультраабиссальной фауны установить былые связи отдельных океанических впадин и восстановить географические условия геологического прошлого. Так, например, сравнивая глубоководную фауну Карибского моря и восточной части Тихого океана, ученые установили, что в геологическом прошлом не было Панамского перешейка.

Несколько позднее было сделано поразительное открытие - в океане обнаружен новый тип животных - погонофоры. Тщательное исследование их анатомии, систематическая классификация составили содержание одного из выдающихся трудов в современной биологии - монографии А. В. Иванова «Погонофоры». Эти два примера показывают, насколько трудным оказалось изучение распределения жизни в океане и тем более общих закономерностей функционирования биологических систем океана.

Сопоставляя разрозненные факты, сравнивая биологию основных групп растений и животных, ученые пришли к важным выводам. Общая биологическая продукция Мирового океана оказалась несколько меньше аналогичной величины, характеризующей всю площадь суши, несмотря на то, что площадь океана в 2,5 раза больше, чем суши. Это связано с тем, что областями высокой биологической продуктивности являются периферия океана и области подъема глубинных вод. Остальное пространство океана - почти безжизненная пустыня, в которой можно встретить разве что крупных хищников. Отдельными оазисами в океанской пустыне оказываются лишь небольшие коралловые атоллы.

Другой важный вывод касается общей характеристики пищевых цепей в океане. Первым звеном пищевой цепи являются одноклеточные зеленые водоросли фитопланктона. Следующее звено - зоопланктон, далее планктоноядные рыбы и хищники. Существенное значение имеют дойные животные - бентос, также являющиеся пищей для рыб.

Воспроизводство в каждом звене пищевой цени таково, что продуцируемая биомасса в 10 раз превышает ее потребление. Иначе говоря, 90%, например, фитопланктона погибает естественным путем и только 10% служит пищей для зоопланктона. Установлено также, что рачки зоопланктона совершают в поисках пищи вертикальные суточные миграции. Совсем недавно удалось обнаружить в пищевом рационе рачков зоопланктона сгустки бактерий, причем этот вид пищи составил до 30% общего объема. Общий итог современных исследований биологии океана состоит в том, что найден подход и построена первая блоковая математическая модель экологической системы открытого океана. Это первый шаг на пути к искусственному регулированию биологической продуктивности океана.

Какими же методами пользуются биологи в океане?

Прежде всего, разнообразными орудиями лова. Мелкие организмы планктона отлавливаются специальными конусными сетями. В результате лова получают осредненное количество планктона в весовых единицах на единицу объема воды. Этими сетями можно облавливать отдельные горизонты водной толщи или «процеживать» воду от заданной глубины до поверхности. Донные животные отлавливаются различными орудиями, буксируемыми по дну. Рыбы и другие организмы нектона отлавливаются разноглубинными тралами.

Своеобразные методы применяются для изучения пищевых взаимоотношений различных групп планктона. Организмы «метят» радиоактивными веществами и затем определяют количество и темп выедания в последующем звене пищевой цепи.

В последние годы нашли применение физические методы косвенного определения количества планктона в воде. Один из этих методов основан на использовании лазерного луча, который как бы прощупывает поверхностный слой воды в океане и дает данные о суммарном количестве фитопланктона. Другой физический метод основан на использовании способности организмов планктона к свечению - биолюминесценции. Специальный батометр-зонд погружается в воду, и по мере погружения фиксируется интенсивность биолюминесценции, как показатель количества планктона. Этими методами очень быстро и полно получают характеристику распределения планктона во множестве точек зондирования.

Важным элементом изучения биологической структуры океана являются химические исследования. Содержание биогенных элементов (минеральных солей азота и фосфора), растворенного кислорода и ряд других важных характеристик среды обитания организмов определяют химическими методами. Особенно важны тщательные химические определения при изучении высокопродуктивных прибрежных районов - зон апвеллинга. Здесь, при регулярных и сильных ветрах с берега, происходит сильный сгоп воды, сопровождающийся подъемом глубинных вод и распространением их в мелководной области шельфа. Глубинные воды содержат в растворенном виде значительное количество минеральных солей азота и фосфора. Вследствие этого в зоне апвеллинга пышно расцветает фитопланктон и в конечном счете формируется область промысловых скоплений рыбы.

Прогноз и регистрация специфического характера среды обитания в зоне апвеллинга выполняются методами химии. Таким образом, и в биологии вопрос о допустимых и применяемых методах исследования решается в наше время комплексно. Широко применяя традиционные методы биологии, исследователи все шире используют методы физики и химии. Обработка материалов, а также обобщение их в виде оптимизированных моделей выполняются методами современной математики.

В области изучения геологии океана за последние 30 лет получено так много новых фактов, что пришлось решительно изменить многие традиционные представления.

Всего лишь 30 лет назад измерение глубины дна океана было исключительно трудным делом. Нужно было опускать в воду тяжелый лот с грузом, подвешенным на длинном стальном тросе. При этом результаты часто бывали ошибочными, а точки с измеренными глубинами отстояли одна от другой на сотни километров. Поэтому и господствовало представление о громадных пространствах океанического дна как о гигантских равнинах.

В 1937 г. впервые был применен новый метод измерения глубин, основанный на эффекте отражения звукового сигнала от дна.

Принцип измерения глубины эхолотом очень прост. Специальный вибратор, укрепленный в нижней части корпуса судна, излучает пульсирующие акустические сигналы. Сигналы отражаются от поверхности дна и улавливаются принимающим устройством эхолота. Время пробегания сигнала «туда и обратно» зависит от глубины, и на ленте при движении корабля вычерчивается непрерывный профиль дна. Серия таких профилей, разделенных относительно небольшими расстояниями, дает возможность провести на карте линии равных глубин - изобаты и изобразить донный рельеф.

Измерения глубин эхолотом изменили прежние представления ученых о рельефе дна океана.

Как же оно выглядит?

От берега тянется полоса, которую называют континентальным шельфом. Глубины на континентальном шельфе обычно не превышают 200-300 м.

В верхней зоне континентального шельфа идет непрерывное и бурное преобразование рельефа. Берег отступает под натиском волн, и одновременно под водой возникают большие скопления обломочного материала. Именно здесь образуются крупные залежи песка, гравия, гальки - превосходный строительный материал, раздробленный и отсортированный самой природой. Разнообразные косы, пересыпи, бары, в свою очередь, наращивают берег в другом месте, отделяют лагуны, перегораживают устья рек.

В тропической зоне океана, где вода очень чистая и теплая, вырастают грандиозные коралловые сооружения - береговые и барьерные рифы. Они тянутся на сотни километров. Коралловые рифы служат убежищем для великого множества организмов и вместе с ними образуют сложную и необыкновенную биологическую систему. Словом, верхняя зона шельфа «живет» бурной геологической жизнью.

На глубинах 100-200 м геологические процессы как бы замирают. Рельеф становится выровненным, на дне много выходов коренных пород. Разрушение скал идет очень медленно.

На внешнем крае шельфа, обращенном к океану, круче становится падение поверхности дна. Иногда уклоны достигают 40-50°. Это материковый склон. Его поверхность рассекают подводные каньоны. Здесь происходят напряженные, порой катастрофические процессы. На склонах подводных каньонов накапливается ил. Временами устойчивость скоплений внезапно нарушается, и по дну каньона низвергается грязевой поток.

Грязевой поток достигает устья каньона, и здесь основная масса песка и крупных обломков, отлагаясь, образует конус выноса - подводную дельту. За пределы материкового подножия выходит мутьевой поток. Нередко отдельные конусы выноса соединяются, и у материкового подножия образуется сплошная полоса рыхлых осадков большой мощности.

53% площади дна занимает ложе океана, та область, которая до недавнего времени считалась равниной. В действительности рельеф ложа океана довольно сложный: поднятия различного строения и происхождения делят его на огромные котловины. Размеры океанических котловин можно оценить хотя бы по одному примеру: северная и восточная котловины Тихого океана занимают площадь большую, чем вся Северная Америка.

На большом пространстве самих котловин господствует холмистый рельеф, иногда встречаются отдельные подводные горы. Высота гор океана достигает 5-6 км, и их вершины нередко возвышаются над водой.

В других районах ложе океана пересекают громадные пологие валы шириной в несколько сот километров. Обычно на этих валах располагаются вулканические острова. В Тихом океане, например, есть Гавайский вал, на котором расположена цепь островов с действующими вулканами и лавовыми озерами.

Со дна океана во многих местах поднимаются вулканические конусы. Иногда вершина вулкана достигает поверхности воды, и тогда возникает остров. Некоторые из таких островов постепенно разрушаются и скрываются под водой.

В Тихом океане обнаружено несколько сотен вулканических конусов с явными следами действия волн на плоских вершинах, погруженных на глубину 1000-1300 м.

Эволюция вулканов может быть и иной. На вершине вулкана поселяются рифообразующие кораллы. При медленном погружении кораллы надстраивают риф, и с течением времени образуется кольцевой остров - атолл с лагуной в середине. Рост кораллового рифа может продолжаться очень долго. На некоторых атоллах Тихого океана было проведено бурение, с тем чтобы определить мощность толщи коралловых известняков. Оказалось, что она достигает 1500. Это значит, что вершина вулкана опускалась медленно - приблизительно на протяжении 20 тыс. лет.

Изучая рельеф дна и геологическое строение твердой коры океана, ученые пришли к некоторым новым выводам. Земная кора под дном океана оказалась значительно тоньше, чем на материках. На материках мощность твердой оболочки Земли - литосферы - достигает 50-60 км, а в океане не превышает 5-7 км.

Оказалось также, что литосфера суши и океана различна по составу пород. Под слоем рыхлых пород - продуктов разрушения поверхности суши лежит мощный гранитный слой, который подстилается базальтовым слоем. В океане гранитный слой отсутствует, и рыхлые отложения лежат прямо на базальтах.

Еще более важным оказалось открытие грандиозной системы горных цепей на дне океана. Горная система срединно-океанических хребтов тянется через все океаны на 80 000 км. По своим размерам подводные хребты сравнимы лишь с величайшими горами на суше, например с Гималаями. Гребни подводных хребтов обычно рассечены вдоль глубокими ущельями, которые были названы рифтовыми долинами, или рифтами. Их продолжение прослеживается и на суше.

Ученые поняли, что глобальная система рифтов - явление очень важное в геологическом развитии всей нашей планеты. Начался период тщательного изучения системы рифтовых зон, и в скором времени были получены столь значительные данные, что произошло резкое изменение представлений о геологической истории Земли.

Сейчас ученые вновь обратились к полузабытой гипотезе дрейфа континентов, высказанной немецким ученым А. Вегенером в начале века. Было выполнено тщательное сопоставление контуров материков, разделенных Атлантическим океаном. При этом геофизик Я. Буллард совмещал контуры Европы и Северной Америки, Африки и Южной Америки не по береговым линиям, а по срединной линии материкового склона, приблизительно по изобате 1000 м. Очертания обоих берегов океана совпали так точно, что даже завзятые скептики не могли сомневаться в действительном огромном горизонтальном перемещении материков.

Особенно убедительны были данные, полученные во время геомагнитных съемок в области срединно-океанических хребтов. Выяснилось, что излившаяся базальтовая лава постепенно смещается в обе стороны от гребня хребта. Таким образом, было получено прямое доказательство расширения океанов, раздвижения земной коры в области рифта и в соответствии с этим дрейфа континентов.

Глубинное бурение в океане, которое несколько лет ведется с американского судна «Гломар Челленджер», вновь подтвердило факт расширения океанов. Установили даже среднюю величину расширения Атлантического океана - несколько сантиметров в год.

Удалось также объяснить повышенную сейсмичность и вулканизм на периферии океанов.

Все эти новые данные послужили основанием для создания гипотезы (часто ее называют теорией, настолько убедительны ее аргументы) тектоники (подвижности) литосферных плит.

Первоначальная формулировка этой теории принадлежит американским ученым Г. Хессу и Р. Дитцу. Позднее ее развили и дополнили советские, французские и другие ученые. Смысл новой теории сводится к представлению о том, что жесткая оболочка Земли - литосфера - разделена на отдельные плиты. Эти плиты испытывают горизонтальные перемещения. Силы, приводящие в движение литосферные плиты, порождаются конвективными течениями, т. е. течениями глубинного огненно-жидкого вещества Земли.

Расплывание плит в стороны сопровождается образованием срединно-океанических хребтов, на гребнях которых возникают зияющие трещины рифтов. Через рифты происходит излияние базальтовой лавы.

В других областях литосферные плиты сближаются и сталкиваются. В этих столкновениях, как правило, рождается поддвиг края одной плиты под другую. На периферии океанов известны такие современные зоны поддвига, где часто возникают сильнейшие землетрясения.

Теория тектоники литосферных плит подтверждается множеством фактов, добытых за последние пятнадцать лет в океане.

Общей основой современных представлений о внутреннем строении Земли и процессах, происходящих в ее недрах, служит космогоническая гипотеза академика О. Ю. Шмидта. По его представлениям, Земля, как и другие планеты Солнечной системы, образовалась путем слипания холодного вещества пылевого облака. Дальнейшее нарастание Земли происходило путем захвата новых порций метеоритного вещества при прохождении через пылевое облако, некогда окружавшее Солнце. По мере нарастания планеты происходило погружение тяжелых (железных) метеоритов и всплывание легких (каменных). Этот процесс (разделение, дифференциация) был столь мощным, что внутри планеты вещество расплавлялось и разделялось на тугоплавкую (тяжелую) часть и легкоплавкую (более легкую). Одновременно действовал и радиоактивный разогрев во внутренних частях Земли. Все эти процессы привели к образованию тяжелого внутреннего ядра, более легкого внешнего ядра, нижней и верхней мантии. Геофизические данные и расчеты показывают, что в недрах Земли таится огромная энергия, действительно способная к решительным преобразованиям твердой оболочки - литосферы.

Основываясь на космогонической гипотезе О. 10. Шмидта, академик А. П. Виноградов разработал геохимическую теорию происхождения океана. А. П. Виноградов путем точных расчетов, а также экспериментов по изучению дифференциации расплавленного вещества метеоритов установил, что водная масса океана и атмосферы Земли образовалась в процессе дегазации вещества верхней мантии. Этот процесс продолжается и в наше время. В верхней мантии действительно происходит непрерывная дифференциация вещества, и наиболее легкоплавкая его часть проникает на поверхность литосферы в виде базальтовой лавы.

Представления о строении земной коры и ее динамике постепенно уточняются.

В 1973 и 1974 гг. в Атлантическом океане была осуществлена необычная подводная экспедиция. В заранее выбранном районе Срединно-Атлантического хребта были выполнены глубоководные погружения подводных аппаратов и был детально исследован небольшой по размеру, но очень важный участок океанского дна.

Исследуя дно с надводных судов в период подготовки экспедиции, ученые детально изучили рельеф дна и обнаружили такой район, внутри которого было глубокое ущелье, рассекающее вдоль гребень подводного хребта - рифтовая долина. В этом же районе находится хорошо выраженный в рельефе трансформный разлом - поперечный по отношению к гребню хребта и рифтовому ущелью.

Такая типичная структура дна - рифтовое ущелье, трансформный разлом, молодые вулканы, была обследована с трех подводных судов. В экспедиции участвовали французский батискаф «Архимед» с обеспечивающим его работу специальным судном «Марсель ле Биан», французская подводная лодка «Сиана» с судном «Норуа», американское исследовательское судно «Кнорр», американская подводная лодка «Алвин» с судном «Лулу».

Всего было сделано 51 глубоководное погружение за два сезона.

При выполнении глубоководных погружений до 3000 м экипажи подводных судов столкнулись с некоторыми затруднениями.

Первое, что поначалу сильно усложняло исследования, это невозможность определить местоположение подводного аппарата в условиях сильно расчлененного рельефа.

Подводный аппарат должен был двигаться, сохраняя расстояние от дна не более 5 м. На крутых склонах и пересекая узкие долины, батискаф и подводные лодки не могли пользоваться системой акустических маяков, так как подводные горы препятствовали прохождению сигналов. По этой причине была введена в действие бортовая система на обеспечивающих судах, с помощью которой определяли точное место подводного судна. С обеспечивающего судна следили за подводным аппаратом и руководили его движением. Иногда была и прямая опасность для подводного аппарата, и однажды такая ситуация возникла.

17 июля 1974 г. подводная лодка «Алвин» буквально застряла в узкой трещине и в течение двух с половиной часов осуществляла попытки выйти из западни. Экипаж «Алвин» проявил удивительную находчивость и хладнокровие - после выхода из западни не всплыл на поверхность, но продолжал исследования еще два часа.

В дополнение к непосредственным наблюдениям и измерениям из подводных аппаратов, когда выполнялось фотографирование и сбор образцов, в районе работ экспедиции было сделано бурение с известного специального судна «Гломар Челленджер».

Наконец, с борта исследовательского судна «Кнорр» регулярно проводились геофизические измерения, дополнявшие работу наблюдателей подводных аппаратов.

В результате в небольшом районе дна было сделано 91 км маршрутных наблюдений, 23 тысячи фотографий, собрано более 2 т образцов горных пород и сделано более 100 видеозаписей.

Научные результаты этой экспедиции (она известна под названием «Famous») очень важны. Впервые были применены подводные аппараты не просто для наблюдений подводного мира, но для целеустремленного геологического исследования, подобного тем подробным съемкам, которые геологи ведут на суше.

Впервые были получены прямые доказательства перемещения литосферных плит вдоль границ. В данном случае исследовалась граница между Американской и Африканской плитами.

Была определена ширина зоны, которая расположена между движущимися литосферными плитами. Неожиданно оказалось, что эта зона, где земная кора образует систему трещин и где происходит излияние базальтовой лавы на поверхность дна, то есть формируется новая земная кора, эта зона имеет ширину менее километра.

Очень важное открытие было сделано на склонах подводных холмов. В одном из погружений подводного аппарата «Сиана» на склоне холма были обнаружены трещиноватые рыхлые отдельности, сильно отличающиеся от различных обломков базальтовой лавы. После всплытия «Сианы» было установлено, что это марганцевая руда. Более подробное обследование района распространения марганцевых руд привело к открытию древнего гидротермального месторождения на поверхности дна. Повторные погружения дали новые материалы, доказывающие, что действительно вследствие выхода на поверхность дна термальных вод из недр дна в этом небольшом участке дна лежат руды железа и марганца.

Во время экспедиции возникало множество технических проблем и бывали неудачи, но драгоценный опыт целеустремленных геологических исследований, полученный в течение двух сезонов, тоже важный результат этого необыкновенного океанологического эксперимента.

Методы изучения строения земной коры в океане отличаются некоторыми особенностями. Рельеф дна изучается не только с помощью эхолотов, но также локаторов бокового обзора и специальными эхолотами, которые дают картину рельефа в пределах полосы, равной по ширине глубине места. Эти новые методы дают результаты более точные и более правильно позволяют изобразить рельеф на картах.

На научно-исследовательских судах проводится гравиметрическая съемка с помощью набортных гравиметров, съемка магнитных аномалий. Эти данные дают возможность судить о строении земной коры под океаном. Основной метод исследования - это сейсмическое зондирование. В толще воды помещают небольшой заряд взрывчатки и производят взрыв. Специальное приемное устройство регистрирует время вступления отраженных сигналов. Вычислениями определяют скорость распространения продольных волн, вызванных взрывом в толще земной коры. Характерные величины скоростей дают возможность разделять литосферу на несколько слоев различного состава.

В настоящее время в качестве источника используют пневматические устройства или электрический разряд. В первом случае в воде происходит выброс (практически мгновенно) небольшого объема воздуха, сжатого в специальном устройстве давлением 250-300 атм. На небольшой глубине воздушный пузырь резко расширяется и этим самым имитируется взрыв. Частое повторение таких взрывов, вызываемых устройством, которое называют воздушной пушкой, дает непрерывный профиль сейсмического зондирования и, следовательно, достаточно подробный профиль строения земной коры на всем протяжении галса.

Аналогичным образом используется профилограф с электрическим разрядником (спаркер). В этом варианте сейсмической аппаратуры мощность разряда, возбуждающего колебания, обычно невелика, и пользуются спаркером для изучения мощности и распределения неуплотненных слоев донных отложений.

Для изучения состава донных отложений и получения их образцов применяют различные системы грунтовых трубок и дночерпателей. Грунтовые трубки имеют, в зависимости от задачи исследования, различный диаметр, обычно несут на себе тяжелый груз для максимального заглубления в грунт, иногда имеют внутри поршень и несут на нижнем конце тот или иной замыкатель (кернопрерыватель). Трубка погружается в воду и в осадок на дне на ту или иную глубину (но обычно не более 12-15 м), и извлеченный таким образом керн, обычно называемый колонкой, поднимается на палубу судна.

Дночерпатели, представляющие собой грейферного типа устройства, как бы вырезают небольшой монолит поверхностного слоя донного грунта, который доставляется на палубу судна. Разработаны модели дночерпателей самовсплывающие. Они позволяют обойтись без троса и палубной лебедки и значительно упрощают способ получения образца. В прибрежных районах океана на малых глубинах применяют вибропоршневые грунтовые трубки. С их помощью удается получить колонки длиной до 5 м на песчаных грунтах.

Очевидно, все перечисленные приборы нельзя использовать для получения образцов (кернов) донных пород, уплотненных и имеющих мощность десятки и сотни метров. Эти образцы получают с помощью обычных буровых установок, смонтированных на судах. Для относительно небольших глубин шельфа (до 150-200 м) используют специальные суда, несущие буровую вышку и устанавливаемые в точке бурения на нескольких якорях. Удержание судна в точке осуществляется путем регулирования натяжения цепей, идущих к каждому из четырех якорей.

На глубинах в тысячи метров в открытом океане постановка судна на якорь технически неосуществима. Поэтому разработан специальный метод динамического позиционирования.

Буровое судно выходит в заданную точку, причем точность определения места обеспечивается специальным навигационным устройством, принимающим сигналы с искусственных спутников Земли. Затем на дно устанавливается довольно сложное устройство типа акустического маяка. Сигналы этого маяка принимает система, установленная на судне. После получения сигнала специальные электронные устройства определяют смещение судна и мгновенно выдают команду на подруливающие устройства. Включается нужная группа гребных винтов и положение судна восстанавливается. На палубе судна глубинного бурения размещены буровая вышка с установкой вращательного бурения, большой набор труб и специальное устройство для подъема и свинчивания труб.

Буровое судно «Гломар Челленджер» (пока единственное) осуществляет работы по международному проекту глубоководного бурения в открытом океане. Уже пробурено более 600 скважин, причем наибольшая глубина проходки скважин составила 1300 м. Материалы глубоководного бурения дали столько новых и неожиданных фактов, что интерес к их изучению чрезвычайный. При исследовании дна океана применяют много разнообразных приемов и методов, и можно ожидать в недалеком будущем появления новых методов, использующих новые принципы измерений.

В заключение следует кратко упомянуть об одной задаче в общей программе исследований океана - об изучении загрязнения. Источники загрязнения океана разнообразны. Сброс промышленных и бытовых стоков из прибрежных предприятий и городов. Состав загрязняющих веществ здесь чрезвычайно разнообразен: от отходов атомной промышленности до современных синтетических моющих средств. Значительное загрязнение создают сбросы с океанских судов, а порой и катастрофические разливы нефти при авариях танкеров и морских нефтяных скважин. Есть еще один способ загрязнения океана - через атмосферу. Воздушные течения переносят на громадные расстояния, например, свинец, попадающий в атмосферу с выхлопными газами двигателей внутреннего сгорания. В процессе газообмена с атмосферой свинец попадает в воду и обнаруживается, например, в антарктических водах.

Определения загрязнения организованы в настоящее время в специальную международную систему наблюдений. При этом систематические наблюдения над содержанием загрязняющих веществ в воде возложены на соответствующие суда.

Наибольшее распространение в океане имеет загрязнение нефтепродуктами. Для контроля над ним применяют не только химические методы определения, но большей частью оптические методы. На самолетах и вертолетах устанавливают специальные оптические устройства, с помощью которых определяют границы площади, покрытой нефтяной пленкой, и даже толщину пленки.

Природа Мирового океана, этой, образно выражаясь, огромной экологической системы нашей планеты, еще недостаточно изучена. Доказательством такой оценки служат недавние открытия в различных областях океанологии. Методы изучения Мирового океана довольно разнообразны. Несомненно, в будущем, по мере того как будут найдены и применены новые методы исследования, наука обогатится новыми открытиями.

В наше время почти все открыто и нанесено на карты. Но только почти. Смысл понятия “географическое открытие” во многом изменился. Географическая наука на современном этапе ставит задачей выявление взаимосвязей в природе, установление географических законов и закономерностей.

Одна из важнейших и в то же время сложный проблем современного человечества - комплексное освоение Мирового океана. Решить ее можно только разработав четкую стратегию и определив формы международного сотрудничества в деле освоения океана и сохранения его как целостной экологической системы.

На современном этапе развития науки огромное значение придается исследованию Мирового океана особенно высокоразвитыми странами. Активным развитием национальных океанографических программ выделяются США, Япония, Германия, Франция.

Лидером в исследовании и освоении Мирового океана является США. Так, в 1991 году в США была подготовлена комплексная программа COPS , направленная на:

    создание в течение десятилетия первого поколения действующих систем прогнозирования процессов, происходящих в прибрежных районах океана (экологических, биологических, транспорта донных осадков);

    моделирование, воссоздание и прогноз синоптической изменчивости прибрежной циркуляции;

    создание электронных датчиков, акустических, оптических, радиолокационных спутниковых систем дистанционного зондирования океана, автономных систем наблюдения in situ, численных моделей океанической циркуляции, методов увеличения банков данных, супер-ЭВМ и систем управления банками данных.

Институт океанографии Скриппса продолжает разработку и выполнение проекта АТОК , на реализацию которого Управлением перспективных научных исследований Мирового океана в 1994 году было выделено 56 млн. долл. В течение 30 месяцев были проведены инженерные разработки и исследования в Тихом океане по определению средних значений температуры воды на больших глубинах океана по трассам длиной несколько тысяч миль и картирование этих значений для мониторинга климата.

С 13.02.1995 по 15.01.1996 состоялась 11-месячная кругосветная экспедиция самого большого, оснащенного современным оборудованием океанографического судна “Malkolm Baldrige” Национального управления США по изучению океанов и атмосферы. Экспедицией проведены комплексные исследования с целью получения банков данных о взаимодействии океанов и атмосферы. Планировалось участие судна в международных программах.

Одним из последних крупных проектов, имеющим важное значение для развития физической океанографии в СССР был проект “Помпон-70” , а в 1985 году его часть, которая называлась “Мезополигон” . В результате семь НИС исследовали широкий спектр природных процессов в тропической Атлантике, в Тихом океане. Именно благодаря этому проекту в мире широкое распространение получил так называемый полигонный метод исследований. Его суть заключается в том, что на сравнительно большой акватории океана располагаются суда или автономные буйковые станции, с которых ведутся длительные синхронные наблюдения за состоянием океана (на поверхности и на разных глубинах), а также за атмосферой.

Всестороннее самостоятельное изучение Мирового океана непосильно ни для одной страны. Поэтому практикуется тесное сотрудничество ученых и специалистов разных стран.

На сегодняшний день основными исследовательскими международными программами являются: совместный проект по изучению глобальных потоков в океане (JGOFS), его биохимическая часть (BOFS); эксперимент по изучению циркуляции Мирового океана (WOCE); технологический проект по разработке автономных исследовательских подводных аппаратов (AUTOSUB); глобальная система наблюдения за океаном (GOOS); международный проект ЮНЕСКО по прибрежным экосистемам (КОМАР); программа исследования неживых ресурсов (OSNLR) и некоторые другие.

Особый интерес представляет программа WOCE (6 лет подготовительных работ, США). Руководство экспериментом, к выполнению которого приступили в 1990 году, осуществляется специально организованным комитетом? Наиболее обширная гидрологическая часть программы, рассчитанная на 7-10 лет, предполагает осуществить глобальные наблюдения за циркуляцией Мирового океана (в первые три года - Тихого, затем Индийского и Атлантического океанов).

Наблюдения включают:

    Установку заякоренных измерителей течений;

    Изучение глубоководной циркуляции при помощи поплавков нейтральной плавучести нового типа ALACE (в среднем на глубине 1500 м);

    Глобальные измерения температуры поверхности моря, циркуляции в верхнем слое, атмосферного давления с использованием 530 дрифтеров на акватории 600 км 2 ;

    Измерения уровня моря (прямые и дистанционные);

    Использование микроволновой альтиметрии с ИСЗ ERS-1, TOPEX/POSEIDON, ADEOS.

Раздел программы, посвященный моделированию, предполагает в качестве первого шага разработку вихреразрешающей циркуляции Северной Атлантики. Организуются специальные центры анализа данных.

В частности, в рамках программы WOCE в 1991 году была проведена совместная советско-американская экспедиция в восточной части Черного моря. Шесть дрифтеров, конструкция которых соответствовала требованиям WOCE, были построены МГИ АН УССР и фирмой “Манвил-океан” совместного советско-швейцарского предприятия “Манвил”.

Для программы WOCE важное значение имеет спутниковая система TOPEX/POSEIDON, миссия которой - изучение Мирового океана. Аппаратура разработана совместными усилиями американских и французских ученых. Запуск состоялся 10 августа 1992 года; непрерывные наблюдения начались с конца сентября 1992 года. Получаемые данные анализируются группой из 200 ученых, занимающихся изучением глобальной циркуляции океана, геодезией, геодинамикой, океаническим ветром и волнами. Весьма перспективный метод исследования океана связан с использованием космических средств - орбитальных станций и ИСЗ. Возможно, что только он позволит получить достаточное количество информации о состоянии океана, равное количеству данных о состоянии атмосферы.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии