Методологические принципы лучевых методов диагностики. Тема: Основные методы лучевой диагностики. В урологии и неврологии

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

ГУ «Уфимский НИИ глазных болезней» АН РБ, г. Уфа

Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике — эре рентгенологии. Современные методы лучевой диагностики подразделяются на рентгенологический, радионуклидный, магнитно-резонансный, ультразвуковой.
Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования.
Простой и необременительной для пациента является рентгенография. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов. Показания к рентгенографии должны быть обоснованы, так как рентгеновское излучение сопряжено с лучевой нагрузкой.
Компьютерная томография (КТ) — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения. Компьютерный томограф способен различать ткани, отличающиеся друг от друга по плотности всего на половину процента. Поэтому компьютерный томограф дает примерно в 1000 раз больше информации, чем обычный рентгеновский снимок. При спиральной КТ излучатель движется по спирали по отношению к телу пациента и захватывает за несколько секунд определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями. Спиральная КТ инициировала создание новых перспективных способов визуализации — компьютерной ангиографии, трехмерного (объемного) изображения органов, и, наконец, так называемой виртуальной эндоскопии, которая стала венцом современной медицинской визуализации.
Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Индикаторы — радиофармацевтические препараты (РФП) — вводят в организм больного, а затем с помощью приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. Современными методами радионуклидной диагностики являются сцинтиграфия, однофотонная эмиссионная томография (ОФЭТ) и позитронная эмиссионная томография (ПЭТ), радиография и радиометрия. В основе методов лежит введение РФП, которые испускают позитроны или фотоны. Эти вещества, введенные в человеческий организм, скапливаются в областях увеличенного метаболизма и повышенных кровяных потоков.
Ультразвуковой метод — способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения. Он может зарегистрировать даже незначительные изменения плотности биологических сред. Благодаря этому ультразвуковой метод стал одним из наиболее популярных и доступных исследований в клинической медицине. Наибольшее распространение нашли три метода: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов. При одномерном А-методе отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствует расположению отражающих ультразвук элементов объекта. Ультразвуковое сканирование (В-метод) позволяет получать двухмерное изображение органов. Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь, периметр, поверхность и объем) исследуемого органа. Допплерография позволяет неинвазивно, безболезненно и информативно регистрировать и оценивать кровоток органа. Доказана высокая информативность цветного допплеровского картирования, которое используют в клинике для изучения формы, контуров и просвета кровеносных сосудов.
Магнитно-резонансная томография (МРТ) — исключительно ценный метод исследования. Вместо ионизирующего излучения используется магнитное поле и радиочастотные импульсы. Принцип действия основан на феномене ядерно-магнитного резонанса. Манипулируя градиентными катушками, создающими небольшие дополнительные поля, можно записывать сигналы от тонкого слоя тканей (до 1 мм) и легко изменять направление среза — поперечный, фронтальный и сагиттальный, получая трехмерное изображение. К основным достоинствам метода МРТ относятся: отсутствие лучевой нагрузки, возможность получать изображение в любой плоскости и выполнять трехмерные (пространственные) реконструкции, отсутствие артефактов от костных структур, высокая разрешающая способность визуализации различных тканей, практически полная безопасность метода. Противопоказанием к проведению МРТ является наличие в организме металлических инородных тел, клаустрофобия, судорожный синдром, тяжелое состояние пациента, беременность и лактация.
Развитие лучевой диагностики играет большую роль и в практической офтальмологии. Можно утверждать, что орган зрения — идеальный объект для КТ ввиду выраженных различий в поглощении излучения в тканях глаза, мышцах, нервах, сосудах и ретробульбарной жировой клетчатке. КТ позволяет лучшим образом изучить костные стенки глазниц, выявить патологические изменения в них. КТ применяют при подозрении на опухоль глазницы, при экзофтальме неясного генеза, травмах, инородных телах глазницы. МРТ дает возможность исследовать глазницу в разных проекциях, позволяет лучше разобраться в структуре новообразований внутри глазницы. Но эта методика противопоказана при попадании металлических инородных тел в глаз.
Основными показаниями к проведению УЗИ являются: повреждения глазного яблока, резкое снижение прозрачности светопроводящих структур, отслойка сосудистой оболочки и сетчатки, наличие инородных внутриглазных тел, опухоли, повреждения зрительного нерва, наличие участков обызвествлений в оболочках глаза и области зрительного нерва, динамическое наблюдение за проводимым лечением, изучение характеристик кровотока в сосудах орбиты, исследования перед МРТ или КТ.
Рентгенографию используют как скрининговый метод при травмах глазницы и поражениях ее костных стенок для выявления плотных инородных тел и определения их локализации, проводят диагностику заболеваний слезных путей. Большое значение имеет метод рентгенологического исследования смежных с глазницей придаточных пазух носа.
Так, в Уфимском научно-исследовательском институте глазных болезней за 2010 год проведено 3116 рентгеновских исследований, в т. ч. пациентам из поликлиники — 935 (34 %), из стационара — 1059 (30 %), из кабинета неотложной помощи — 1122 (36 %). Сделано 699 (22,4 %) специальных исследований, к которым относятся исследование слезоотводящих путей с контрастированием (321), бесскелетная рентгенография (334), выявление локализации инородных тел в орбите (39). Рентгенография органов грудной клетки при воспалительных заболеваниях орбиты и глазного яблока составила 18,3 % (213), а придаточных пазух носа — 36,3 % (1132).

Выводы . Лучевая диагностика является необходимой составной частью клинического обследования больных в офтальмологических клиниках. Многие достижения традиционного рентгенологического исследования все больше отступают перед совершенствующимися возможностями КТ, УЗИ, МРТ.

Проблемы заболевания являются более сложными и труд­ными, нем любые другие, которые приходится решать тренированному уму.

Величественный и бесконечный мир расстилается вокруг. И каждый человек - тоже мир, сложный и неповторимый. Разными путями стремим­ся мы исследовать этот мир, понять основные принципы его строения и ре­гуляции, познать его устройство и функции. Научное познание опирается на следующие исследовательские приемы: морфологический метод, физио­логический эксперимент, клиническое исследование, лучевые и инстру­ментальные методы. Однако научные знания - лишь первая основа диагнос­тики. Эти знания - все равно, что ноты для музыканта. Однако, используя одни я те же ноты, разные музыканты при исполнении одного и того же произведения достигают разного эффекта. Вторая основа диагностики - искусство и личный опыт врача. «Наука и искусство так же связаны между собой, как легкие и сердце, так что если один орган извращен, то другой не может правильно действовать» (Л.Толстой).

Все это подчеркивает исключительную ответственность врача: ведь каждый раз у постели больного он принимает важное решение. Постоянное повышение знаний и стремление к творчеству - вот черты настоящего врача. «Мы любим все - и жар холодных числ, и дар божественных виде­ний...» (А. Блок).

С чего начинается любая диагностика, в том числе лучевая? С глубоких и твердых знаний о строении и функциях систем и органов здорового человека во всем своеобразии его половых, возрастных, конституциональных и инди­видуальных особенностей. «Для плодотворного анализа работы каждого ор­гана необходимо прежде всего знать его нормальную деятельность» (И.П. Павлов). В связи с этим все главы III части учебника начинаются с крат­кого изложения лучевой анатомии и физиологии соответствующих органов.

Мечта И.П. Павлова охватить величественную деятельность головного мозга системой уравнений еще далека от воплощения. При большинстве патологических процессов диагностическая информация столь сложна и индивидуальна, что выразить ее суммой уравнений пока не удается. Тем не менее повторное рассмотрение сходных типовых реакций позволило теоре­тикам и клиницистам выделить типовые синдромы повреждений и заболе­ваний, создать некоторые образы болезней. Это - важная ступень на диа­гностическом пути, поэтому в каждой главе после описания нормальной картины органов рассмотрены симптомы и синдромы болезней, наиболее часто выявляемые при лучевой диагностике. Добавим лишь, что именно здесь ярко проявляются личные качества врача: его наблюдательность и способность в пестром калейдоскопе симптомов разглядеть ведущий син­дром поражения. Можно поучиться у наших далеких предков. Мы имеем в виду наскальные рисунки времен неолита, в которых удивительно точно отражена общая схема (образ) явления.

Кроме того, в каждой главе дано краткое описание клинической карти­ны немногих наиболее часто встречающихся и тяжелых заболеваний, с ко­торыми студент должен познакомиться как на кафедре лучевой диагности-


ки и лучевой терапии, так и в процессе курирования больных в терапевти­ческих и хирургических клиниках на старших курсах.

Собственно диагностика начинается с обследования больного, и очень важно правильно выбрать программу его проведения. Ведущим звеном в процессе распознавания болезней, конечно, остается квалифицированное клиническое обследование, но оно уже не сводится только к осмотру боль­ного а представляет собой организованный целенаправленный процесс, который начинается с осмотра и включает применение специальных мето­дов, среди которых видное место занимают лучевые.

В этих условиях работа врача или группы врачей должна основываться на четкой программе действий, которая предусматривает порядок примене­ния различных способов исследования, т.е. каждый врач должен быть воору­жен набором стандартных схем обследования больных. Эти схемы призваны обеспечить высокую надежность диагностики, экономию сил и средств спе­циалистов и пациентов, приоритетное применение менее инвазивиых вме­шательств и уменьшение лучевой нагрузки на больных и медицинский пер­сонал. В связи с этим в каждой главе приведены схемы лучевого обследова­ния при некоторых клинических и рентгенологических синдромах. Это лишь скромная попытка наметить путь комплексного лучевого обследования при наиболее часто встречающихся клинических ситуациях. Дальнейшая задача состоит в переходе от этих ограниченных схем к подлинным диагностичес­ким алгоритмам, которые будут содержать все данные о больном.

На практике, увы, выполнение программы обследования сопряжено с определенными трудностями: различно техническое оснащение лечебных учреждений, неодинаковы знания и опыт врачей, состояние больного. «Ост­рословы говорят, что оптимальной траекторией называется та траектория, по которой ракета никогда не летает» (Н.Н. Моисеев). И тем не менее врач должен для конкретного больного выбрать наилучший путь обследования. Отмечен­ные этапы входят в общую схему диагностического исследования пациента.

Данные анамнеза и клиническая картина заболевания

Установление показаний к лучевому исследованию

Выбор метода лучевого исследования и подготовка больного

Проведение лучевого исследования


Анализ изображения органа, полу­ченного с помощью лучевых методов


Анализ функции органа, проведен­ный с помощью лучевых методов


Сопоставление с результатами инструментальных и лабораторных исследований

Заключение


Для того чтобы эффективно проводить лучевую диагностику и грамот­но оценивать результаты лучевых исследований, необходимо придержи­ваться строгих методологических принципов.

Первый принцип: всякое лучевое исследование должно быть обо­сновано. Главным аргументом в пользу выполнения лучевой процедуры должна быть клиническая необходимость получения дополнительной информации, без которой полный индивидуальный диагноз установить невозможно.

Второй принцип: при выборе метода исследования необходимо учитывать лучевую (дозовую) нагрузку на больного. В инструктивных доку­ментах Всемирной организации здравоохранения предусмотрено, что рент­генологическое исследование должно обладать несомненной диагностичес­кой и прогностической эффективностью; в противном случае оно является напрасной тратой средств и представляет опасность для здоровья вследст­вие неоправданного применения радиации. При равной информативности методов нужно отдать предпочтение тому, при котором не происходит об­лучения больного или оно наименее значительное.

Третий принцип: при проведении лучевого исследования нужно придерживаться правила «необходимо и достаточно», избегая излишних про­цедур. Порядок выполнения необходимых исследований - от наиболее щадящих и необременительных к более сложным и инвазивным (от простого к сложно­му). Однако не нужно забывать, что иногда приходится сразу выполнять сложные диагностические вмешательства ввиду их высокой информатив­ности и важности для планирования лечения больного.

Четвертый принцип: при организации лучевого исследования нужно учитывать экономические факторы («стоимостная эффективность методов»). Приступая к обследованию больного, врач обязан предвидеть затраты на его проведение. Стоимость некоторых лучевых исследований столь велика, что неразумное применение их может отразиться на бюджете лечебного учреждения. На первое место мы ставим пользу для больного, но при этом не имеем права игнорировать экономику лечебного дела. Не при­нимать ее во внимание означает неправильно организовывать работу луче­вого отделения.



Наука есть лучший современный способ удовлетворе­ния любопытства отдельных лиц за счет государства.

Одной из активно развивающихся отраслей современной клинической медицины является лучевая диагностика. Этому способствует постоянный прогресс в области компьютерных технологий и физики. Благодаря высокоинформативным неинвазивным методам обследования, обеспечивающим подробную визуализацию внутренних органов, врачам удается выявлять заболевания на разных стадиях их развития, в том числе и до появления ярко выраженной симптоматики.

Сущность лучевой диагностики

Лучевой диагностикой принято называть отрасль медицины, связанную с применением ионизирующего и неионизирующего излучения с целью обнаружения анатомических и функциональных изменений в организме и выявления врожденных и приобретенных заболеваний. Выделяют такие виды лучевой диагностики:

  • рентгенологическая, подразумевающая использование рентгеновских лучей: рентгеноскопия, рентгенография, компьютерная томография (КТ), флюорография, ангиография;
  • ультразвуковая, связанная с применением ультразвуковых волн: ультразвуковое исследование (УЗИ) внутренних органов в форматах 2D, 3D, 4D, допплерография;
  • магнитно-резонансная, основанная на явлении ядерного магнитного резонанса – способности вещества, содержащего ядра с ненулевым спином и помещенного в магнитное поле, поглощать и излучать электромагнитную энергию: магнитно-резонансная томография (МРТ), магнитно-резонансная спектроскопия (МРС);
  • радиоизотопная, предусматривающая регистрацию излучения, исходящего от радиофармацевтических препаратов, введенных в организм пациента или в биологическую жидкость, содержащуюся в пробирке: сцинтиграфия, сканирование, позитронно-эмиссионная томография (ПЭТ), однофотонная эмиссионная томография (ОФЭКТ), радиометрия, радиография;
  • тепловая, связанная с использованием инфракрасного излучения: термография, тепловая томография.

Современные методы лучевой диагностики позволяют получать плоские и объемные изображения внутренних органов человека, поэтому их называют интраскопическими («intra» – «внутри чего-либо»). Они предоставляют медикам около 90 % информации, необходимой для постановки диагнозов.

В каких случаях противопоказана лучевая диагностика

Исследования такого типа не рекомендуется назначать пациентам, пребывающим в коме и тяжелом состоянии, сочетающемся с лихорадкой (повышенной до 40-41 ̊С температурой тела и ознобом), страдающим от острой печеночной и почечной недостаточности (утраты органами способности в полной мере выполнять свои функции), психических заболеваний, обширных внутренних кровотечений, открытого пневмоторакса (когда воздух во время дыхания свободно циркулирует между легкими и внешней средой через повреждение грудной клетки).

Однако иногда требуется проведение КТ головного мозга по неотложным показаниям, например, пациенту в коме при дифференциальной диагностике инсультов, субдуральных (область между твердой и паутинной мозговыми оболочками) и субарахноидальных (полость между мягкой и паутинной мозговыми оболочками) кровоизлияний.

Все дело в том, что КТ проводится очень быстро, и гораздо лучше «видит» объемы крови внутри черепа.

Это позволяет принять решение о необходимости срочного нейрохирургического вмешательства, а при проведении КТ можно оказывать пациенту реанимационное пособие.

Рентгенологические и радиоизотопные исследования сопровождаются определенным уровнем лучевой нагрузки на организм пациента. Так как доза радиации, хоть и небольшая, способна негативно сказаться на развитии плода, рентгенологическое и радиоизотопное лучевое обследование при беременности противопоказано. Если один из этих видов диагностики назначен женщине в период лактации, ей рекомендуется на 48 часов после процедуры прекратить грудное вскармливание.

Магнитно-резонансные исследования не связаны с радиацией, поэтому разрешены беременным женщинам, но все же их проводят с осторожностью: в ходе процедуры есть риск чрезмерного нагревания околоплодных вод, что может навредить ребенку. То же самое касается и инфракрасной диагностики.

Абсолютным противопоказанием к магнитно-резонансному исследованию является наличие у пациента металлических имплантатов, кардиостимулятора.

Ультразвуковая диагностика противопоказаний не имеет, поэтому разрешена и детям, и беременным. Только больным, у которых имеются повреждения прямой кишки, не рекомендуется проводить трансректальное ультразвуковое исследование (ТРУЗИ).

Где используются лучевые методы обследования

Широкое применение получила лучевая диагностика в неврологии, гастроэнтерологии, кардиологии, ортопедии, отоларингологии, педиатрии и других отраслях медицины. Об особенностях ее использования, в частности, о ведущих инструментальных методах исследования, назначаемых пациентам с целью выявления заболеваний различных органов и их систем, речь пойдет дальше.

Применение лучевой диагностики в терапии

Лучевая диагностика и терапия – тесно связанные друг с другом отрасли медицины. Как свидетельствует статистика, в число проблем, с которыми чаще всего обращаются пациенты к врачам-терапевтам, входят заболевания дыхательной и мочевыводящей систем.

Основным методом первичного обследования органов грудной клетки продолжает оставаться рентгенография.
Это связано с тем, что рентгенологическая лучевая диагностика заболеваний органов дыхания недорогостоящая, быстрая и высокоинформативная.

Независимо от предполагаемого заболевания, сразу делают обзорные снимки в двух проекциях – прямой и боковой во время глубокого вдоха. Оценивают характер затемнения/просветления легочных полей, изменения сосудистого рисунка и корней легких. Дополнительно могут быть выполнены изображения в косой проекции и на выдохе.

Для определения деталей и характера патологического процесса часто назначают рентгенологические исследования с контрастом:

  • бронхографию (контрастирование бронхиального дерева);
  • ангиопульмонографию (контрастное исследование сосудов малого круга кровообращения);
  • плеврографию (контрастирование плевральной полости) и другие методы.

Лучевая диагностика при пневмонии, подозрении на скопление жидкости в плевральной полости или тромбоэмболию (закупорку) легочной артерии, наличие опухолей в зоне средостения и субплевральных отделах легких часто проводится с помощью УЗИ.

Если перечисленные выше способы не позволили обнаружить существенных изменений в легочной ткани, но при этом у пациента наблюдается тревожная симптоматика (одышка, кровохарканье, наличие атипичных клеток в мокроте), назначается КТ легких. Лучевая диагностика туберкулеза легких такого типа позволяет получать объемные послойные изображения тканей и обнаруживать заболевание даже на стадии его зарождения.

Если необходимо исследовать функциональные способности органа (характер вентиляции легких), в том числе и после трансплантации, провести дифференциальную диагностику между добро- и злокачественными новообразованиями, проверить легкие на наличие метастазов рака другого органа, проводится радиоизотопная диагностика (сцинтиграфия, ПЭТ или используются другие методы).

В задачи службы лучевой диагностики, функционирующей при местных и региональных департаментах охраны здоровья, входит контроль соблюдения медицинским персоналом стандартов исследований. Это необходимо, так как при нарушении порядка и периодичности проведения диагностических процедур чрезмерное облучение может стать причиной ожогов на теле, поспособствовать развитию злокачественных новообразований и уродств у детей в следующем поколении.

Если радиоизотопные и рентгенологические исследования выполняются правильно, дозы излучаемой радиации незначительные, неспособные вызывать нарушения в работе организма взрослого человека. Инновационное цифровое оборудование, которое пришло на смену старым рентгеновским аппаратам, позволило существенно снизить уровень лучевой нагрузки. К примеру, доза облучения при маммографии варьируется в диапазоне от 0,2 до 0,4 мЗв (миллизиверта), при рентгене органов грудной клетки – от 0,5 до 1,5 мЗв, при КТ головного мозга – от 3 до 5 мЗв.

Максимально допустимая для человека доза облучения составляет 150 мЗв в год.

Применение рентгеноконтрастных веществ в лучевой диагностике помогает защитить зоны тела, которые не исследуются, от облучения. С этой целью перед рентгеном на пациента надевают свинцовый фартук, галстук. Чтобы радиофармацевтический препарат, введенный в организм перед радиоизотопной диагностикой, не накапливался и быстрее выводился вместе с мочой, больному рекомендуют пить много воды.

Подводя итоги

В современной медицине лучевая диагностика в неотложных состояниях, при выявлении острых и хронических заболеваний органов, обнаружении опухолевых процессов играет ведущую роль. Благодаря интенсивному развитию компьютерных технологий удается постоянно совершенствовать диагностические методики, делая их более безопасными для человеческого организма.

Виды лучевых методов диагностики

К лучевым методам диагностики относятся:

  • Рентгенодиагностика
  • Радионуклидное исследование
  • УЗИ диагностика
  • Компьютерная томография
  • Термография
  • Рентгенодиагностика

Является самым распространённым (но не всегда самым информативным!!!) методом исследования костей скелета и внутренних органов. Метод основан на физических законах, согласно которым человеческое тело неравномерно поглощает и рассеивает специальные лучи - рентгеновские волны. Рентгеновское излучение является одним из разновидностей гамма излучения. С помощью рентгеновского аппарата генерируется пучок, который направляется через тело человека. При прохождении рентгеновских волн через исследуемые структуры, они рассеиваются и поглощаются костями, тканями, внутренними органами и на выходе образуется своего рода скрытая анатомическая картина. Для её визуализации используются специальные экраны, рентгеновская плёнка (кассеты) или сенсорные матрицы, которые после обработки сигнала позволяют видеть модель исследуемого органа на экране ПК.

Виды рентгенодиагностики

Различают следующие виды рентгенодиагностики:

  1. Рентгенография - графическая регистрация изображения на рентгеновской плёнке или цифровых носителях.
  2. Рентгеноскопия - изучение органов и систем с помощью специальных флюоресцирующих экранов, на которые проецируется изображение.
  3. Флюорография - уменьшенный размер рентгеновского снимка, который получают путём фотографирования флюоресцирующего экрана.
  4. Ангиография - комплекс рентгенологических методик, с помощью которых изучают кровеносные сосуды. Изучение лимфатических сосудов носит название - лимфография.
  5. Функциональная рентгенография - возможность исследования в динамике. Например, регистрируют фазу вдоха и выдоха при исследовании сердца, лёгких или делают два снимка (сгибание, разгибание) при диагностике заболеваний суставов.

Радионуклидное исследование

Этот метод диагностики делится на два вида:

  • in vivo. Больному в организм вводят радиофармпрепарат (РФП) - изотоп, который избирательно накапливается в здоровых тканях и патологических очагах. С помощью специальной аппаратуры (гамма-камера, ПЭТ, ОФЭКТ) накопление РФП фиксируются, обрабатываются в диагностическое изображение и полученные результаты интерпретируются.
  • in vitro. При этом виде исследования РФП не вводится в организме человека, а для диагностики исследуются биологические среды организма - кровь, лимфа. Этот вид диагностики имеет ряд преимуществ - отсутствие облучения пациента, высокая специфичность метода.

Диагностика in vitro позволяет проводить исследования на уровне клеточных структур, по сути являясь методом радиоиммунного анализа.

Радионуклидное исследование применяется как самостоятельный метод лучевой диагностики для постановки диагноза (метастазирование в кости скелета, сахарный диабет, болезни щитовидной железы), для определения дальнейшего плана обследования при нарушении работы органов (почки, печень) и особенностей топографии органов.

УЗИ диагностика

В основе метода лежит биологическая способность тканей отражать или поглощать ультразвуковые волны (принцип эхолокации). Используются специальные детекторы, которые одновременно являются и излучателями ультразвука, и его регистратором (детекторами). Пучок ультразвука с помощью этих детекторов направляют на исследуемый орган, который «отбивает» звук и возвращает его на датчик. С помощью электроники отражённые от объекта волны обрабатываются и визуализируются на экране.

Преимущества перед другими методами — отсутствие лучевой нагрузки на организм.

Методики УЗИ диагностики

  • Эхография - «классическое» УЗИ-исследование. Применяется для диагностики внутренних органов, при наблюдении за беременностью.
  • Допплерография - исследование структур, содержащих жидкости (измерение скорости движения). Чаще всего используется для диагностики кровеносной и сердечно-сосудистой систем.
  • Соноэластография - исследование эхогенности тканей с одновременным измерением их эластичности (при онкопатологии и наличии воспалительного процесса).
  • Виртуальная сонография - совмещает в себе УЗИ диагностику в реальном времени со сравнением изображения, сделанным с помощью томографа и записанного заранее на УЗИ аппарат.

Компьютерная томография

С помощью методик томографии можно увидеть органы и системы в двух- и трёхмерном (объёмном) изображении.

  1. КТ - рентгеновская компьютерная томография . В основе лежат методы рентгенодиагностики. Пучок рентгеновских лучей проходит через большое количество отдельных срезов организма. На основании ослабления рентгеновских лучей формируется изображение отдельного среза. С помощью компьютера происходит обработка полученного результата и реконструкция (путём суммации большого количества срезов) изображения.
  2. МРТ - магнитно-резонансная диагностика. Метод основан на взаимодействии протонов клетки с внешними магнитами. Некоторые элементы клетки имеют способность поглощать энергию при воздействии электромагнитного поля, с последующей отдачей специального сигнала - магнитного резонанса. Этот сигнал считывается специальными детекторами, а потом преобразовывается в изображение органов и систем на компьютере. В настоящее время считается одним из самых эффективных методов лучевой диагностики , так как позволяет исследовать любую часть тела в трёх плоскостях.

Термография

Основана на способности регистрировать специальной аппаратурой инфракрасные излучения, которые излучают кожные покровы и внутренние органы. В настоящее время в диагностических целях используется редко.

При выборе метода диагностики необходимо руководствоваться несколькими критериями:

  • Точность и специфичность метода.
  • Лучевая нагрузка на организм — разумное сочетание биологического действия излучения и диагностической информативности (при переломе ноги нет необходимости в радионуклидном исследовании. Достаточно сделать рентгенографию поражённого участка).
  • Экономическая составляющая. Чем сложнее диагностическая аппаратура, тем дороже будет стоить обследование.

Начинать диагностику надо с простых методов, подключая в дальнейшем более сложные (если необходимо) для уточнения диагноза. Тактику обследования определяет специалист. Будьте здоровы.

Современная лучевая диагностика является одной из наиболее динамично развивающихся областей клинической медицины. В значительной степени это связано с продолжающимся прогрессом в области физики и компьютерных технологий. Авангардом развития лучевой диагностики являются методы томографии: рентгеновской компьютерной (РКТ) и магнитно-резонансной (МРТ), позволяющие неинвазивно оценить характер патологического процесса в теле человека.

В настоящее время стандартом РКТ является обследование с помощью многосрезового томографа с возможностью получения от 4 до 64 срезов с временным разрешением 0,1-0,5 с. (минимально доступная длительность одного оборота рентгеновской трубки составляет 0,3 с.).

Таким образом, длительность томографии всего тела с толщиной среза менее 1 мм составляет около 10-15 секунд, а результатом исследования являются от нескольких сотен до нескольких тысяч изображений. Фактически, современная мультиспиральная компьютерная томография (МСКТ) является методикой объемного исследования всего тела человека, так как полученные аксиальные томограммы составляют трёхмерный массив данных, позволяющий выполнить любые реконструкции изображений, в том числе мультипланарные, 3D-реформации, виртуальные эндоскопии.

Применение контрастных препаратов при КТ позволяет повысить точность диагностики, а во многих случаях является обязательным компонентом исследования. Для увеличения контрастности тканей применяют водорастворимые йодсодержащие контрастные вещества, которые вводятся внутривенно (обычно в локтевую вену) с помощью автоматического инъектора (болюсно, т. е. в значительном объеме и с высокой скоростью).

Ионные йод-содержащие контрастные препараты обладают целым рядом недостатков, связанных с высокой частотой развития побочных реакций при быстром внутривенном введении. Появление неионных низкоосмолярных препаратов (Омнипак, Ультравист) сопровождалось уменьшением частоты тяжелых побочных реакций в 5-7 раз, что превращает МСКТ с внутривенным контрастированием в доступную, амбулаторную, рутинную методику обследования.

Подавляющее большинство МСКТ исследований может быть стандартизовано и проводиться рентген-лаборантом, т. е. МСКТ является одним из наименее оператор-зависимых методов лучевой диагностики. Соответственно, МСКТ исследование, проведенное методически правильно и хранящееся в цифровом виде, может обрабатываться и интерпретироваться любым специалистом или консультантом без потери первичной диагностической информации.

Длительность исследования редко превышает 5-7 минут (является несомненным преимуществом МСКТ) и может проводиться у пациентов, находящихся в тяжелом состоянии. Однако, время обработки и анализа результатов МСКТ занимает существенно больше времени, так как врач-рентгенолог обязан изучить и описать 500-2000 первичных изображений (до и после введения контрастного препарата), реконструкций, реформаций.

МСКТ обеспечила переход в лучевой диагностике от принципа «от простого к сложному» к принципу «наибольшей информативности», заменив целый ряд ранее использовавшихся методик. Несмотря на высокую стоимость, присущую МСКТ представляет собой оптимальное соотношение стоимость/эффективность и высокая клиническая значимость, что определяет продолжающееся бурное развитие и распространение метода.

Услуги отделения

Кабинет РКТ предлагает следующий спектр исследований:

  • Мультиспиральная компьютерная томография (МСКТ) головного мозга.
  • МСКТ органов шеи.
  • МСКТ гортани в 2 этапа (до и во время фонации).
  • МСКТ придаточных пазух носа в 2-х проекциях.
  • МСКТ височных костей.
  • МСКТ органов грудной клетки.
  • МСКТ брюшной полости и забрюшинного пространства (печень, селезенка, поджелудочная железа, надпочечники, почки и мочевыделительная система).
  • МСКТ малого таза.
  • МСКТ сегмента скелета (в т. ч. плечевых, коленных, тазобедренных суставов, кистей рук, стоп), лицевого черепа (орбиты).
  • МСКТ сегментов позвоночного столба (шейного, грудного, поясничного отделов).
  • МСКТ дисков поясничного отдела позвоночного столба (L3-S1).
  • МСКТ остеоденситометрия.
  • МСКТ виртуальная колоноскопия.
  • МСКТ планирование дентальной имплантации.
  • МСКТ-ангиография (грудной, брюшной аорты и её ветвей, лёгочных артерий, интракраниальных артерий, артерий шеи, верхних и нижних конечностей).
  • исследования с внутривенным контрастированием (болюсные, многофазные).
  • 3D-, мультипланарные реконструкции.
  • Запись исследования на CD/DVD.

При проведении исследований с внутривенным контрастированием используется неионный контрастный препарат «Омнипак» (производства Amersham Health, Ирландия).
Результаты исследований обрабатываются на рабочей станции, с помощью мультипланарной, 3D-реконструкции, виртуальной эндоскопии.
Пациенты получают результаты исследования на CD или DVD диске. При наличии результатов предыдущих исследований проводится сравнительный анализ (в т. ч. цифровой), оценка динамики изменений. Врач оформляет заключение, при необходимости проводит консультацию по результатам, дает рекомендации о дальнейших исследованиях.

Оборудование

Мультиспиральный компьютерный томограф BrightSpeed 16 Elite - разработка компании GE, сочетающая в себе компактность конструкции и самые современные технологии.
Компьютерный томограф BrightSpeed позволяет получать изображения до 16 срезов с высоким разрешением за один оборот трубки. Минимальная толщина среза 0,625 мм.

Рентген

Рентгеновское отделение оснащено новейшей цифровой аппаратурой, позволяющей при высоком качестве исследования снижать дозу рентгеновского облучения.
Результаты обследования выдаются пациентам на руки на лазерной плёнке, а также CD/DVD дисках.
Рентгеновское обследование позволяет выявлять туберкулез, воспалительные заболевания, онкопатологию.

Услуги отделения

В отделении проводятся все виды рентгеновского обследования:

  • рентгеноскопия грудной клетки, желудка, толстой кишки;
  • рентгенография грудной клетки, костей, позвоночника с функциональными пробами, стоп на плоскостопие, исследование почек и мочевыделительных путей;
  • томография грудной клетки, гортани, а также костей;
  • снимки зубов и ортопонтамограммы;
  • исследование молочных желез, стандартная маммография, прицельная, прицельная с увеличением - при наличии микрокальцинатов;
  • пневмокистография для исследования внутренней стенки крупной кисты;
  • контрастное исследование млечных протоков - дуктография;
  • томосинтез молочных желёз.

В отделении также проводится рентгеновская денситометрия:

  • поясничного отдела позвоночника в прямой проекции;
  • поясничного отдела позвоночника в прямой и боковой проекции с проведением морфометрического анализа;
  • проксимального отдела бедренной кости;
  • проксимального отлела бедренной кости с эндопротезом;
  • костей предплечия;
  • кисти;
  • всего тела.


Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии