Функции зрительного анализатора и методика их исследования. Строение и работа зрительного анализатора человека

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Зрительный анализатор включает:

периферический отдел: рецепторы сетчатки глаза;

проводниковый отдел: зрительный нерв;

центральный отдел: затылочная доля коры больших полушарий.

Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

Строения глаза

Глаз состоит из глазного яблока и вспомогательного аппарата .

Вспомогательный аппарат глаза

брови - защита от пота;

ресницы - защита от пыли;

веки - механическая защита и поддержание влажности;

слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

Глазное яблоко

Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

Оно расположено на жировой подушке в переднем отделе глазницы.

Глаз имеет три оболочки:

белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;

сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;

сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

Стекловидное тело - полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.

Сетчатка (ретина) - рецепторный аппарат глаза.

Строение сетчатки

Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.

вторые - биполярные нейроны;

третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

Светочувствительные элементы сетчатки:

палочки - воспринимают яркость;

колбочки - воспринимают цвет.

Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называетсядиском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

Мышцы глаза

глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;

мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.

мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

Проводниковый отдел

Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ). После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

Центральный отдел

Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.

Общее строение зрительного анализатора

Зрительный анализатор состоит из периферической части , представленной глазным яблоком и вспомог. отделом глаза (веки, слезн. аппарат, мышцы) –для восприятия света и трансформации его из свет импульса в электр. импульс; проводящих путей , включающих зрительный нерв, зрительный тракт, лучистость Грациоле(для объединения 2-х изображений в одно и проведение импульса в корковую зону), и центрального отдела анализатора. Центральный отдел состоит из подкоркового центра (наружные коленчатые тела) и коркового зрительного центра затылочной доли головного мозга (для анализа изображения на основе уже имеющихся данных).

Форма глазного яблока приближается к шаровидной, что оптимально для работы глаза как оптического прибора, и обеспечивает высокую подвижность глазного яблока. Такая форма наиболее устойчива к механическим воздействиям и поддерживается довольно высоким внутриглазным давлением и прочностью наружной оболочки глаза.анатомически различают два полюса – передний и задний. Прямая линия, соединяющая оба полюса глазного яблока, называется анатомической или оптической осью глаза. Плоскость, перпендикулярная анатомической оси и отстоящая на равном расстоянии от полюсов- экватор. Линии, проведенные через полюса по окружности глаза, называются меридианами.

Глазное яблоко имеет 3 оболочки, окружающие его внутренние среды, – фиброзную, сосудистую и сетчатую.

Строение наружной оболочки. Функции

Наружная оболочка, или фиброзная, представлена двумя отделами: роговицей и склерой.

Роговица , является передним отделом фиброзной оболочки, занимая 1/6 ее протяженности. Основные свойства роговицы: прозрачность, зеркальность, бессосудистость, высокая чувствительность, сферичность. Горизонтальный диаметр роговицы составляет »11 мм, вертикальный – на 1 мм короче. Толщина в центральной части 0,4-0,6 мм, на периферии 0,8-1 мм. В роговице выделяются пять слоев:

Передний эпителий;

Передняя пограничная пластинка, или боуменова мембрана;

Строма, или собственное вещество роговицы;

Задняя пограничная пластинка, или десцеметова мембрана;

Задний эпителий роговицы.

Рис. 7. Схема строения глазного яблока

Фиброзная оболочка: 1- роговица; 2 – лимб; 3-склера. Сосудистая оболочка:

4 – радужка; 5 – просвет зрачка; 6 – цилиарное тело (6а – плоская часть цилиарного тела; 6б – цилиарная мышца); 7 – хориоидея. Внутренняя оболочка: 8 –сетчатка;

9 – зубчатая линия; 10 – область желтого пятна; 11 – диск зрительно нерва.

12 – орбитальная часть зрительного нерва; 13 – оболочки зрительного нерва. Содержимое глазного яблока: 14 – передняя камера; 15 – задняя камера;

16 – хрусталик; 17 – стекловидное тело. 18 – конъюнктива: 19 – наружная мышца

Роговица выполняет функции: защитную, оптическую (»43,0 дптр), формообразующая, поддержание ВГД.

Граница перехода роговицы в склеру называется лимбом . Это полупрозрачная зона шириной »1мм.

Склера занимает оставшиеся 5/6 протяженности фиброзной оболочки. Ее характеризуют непрозрачность и эластичность. Толщина склеры в области заднего полюса до 1,0 мм, вблизи роговицы 0,6-0,8 мм. Самое тонкое место склеры расположено в области прохождения зрительного нерва – решетчатая пластинка. К функциям склеры относятся: защитная (от воздействия повреждающих факторов, боковых засветов сетчатки), каркасная (остов глазного яблока). Склера также служит местом прикрепления глазодвигательных мышц.

Сосудистый тракт глаза, его особенности. Функции

Средняя оболочка носит название сосудистого, или увеального тракта. Она подразделяется на три отдела: радужку, цилиарное тело и хориоидею.

Радужка (iris) представляет передний отдел сосудистой оболочки. Она имеет вид округлой пластинки, в центре которой находится отверстие - зрачок. Ее горизонтальный размер 12,5 мм, вертикальный 12 мм. Цвет радужки зависит от пигментного слоя. Радужка имеет две мышцы: сфинктер - суживающий зрачок, и дилятатор - расширяющий зрачок.

Функции радужки: экранирует световые лучи, является диафрагмой для лучей и участвует в регуляции ВГД.

Цилиарное , или ресничное тело (corpus ciliare) , имеет вид замкнутого кольца шириной около 5-6 мм. На внутренней поверхности передней части цилиарного тела имеются отростки, вырабатывающие внутриглазную жидкость, задняя часть - плоская. Мышечный слой представлен цилиарной мышцей.

От цилиарного тела тянется циннова связка, или ресничный поясок, поддерживающая хрусталик. Вместе они составляют аккомодационный аппарат глаза. Граница цилиарного тела с хориоидеей проходит на уровне зубчатой линии, что соответствует на склере местам прикрепления прямых мышц глаза.

Функции цилиарного тела: участие в аккомодации (мышечная часть с ресничным пояском и хрусталиком) и продукция внутриглазной жидкости (ресничные отростки). Хориоидея , или собственно сосудистая оболочка, составляет заднюю часть сосудистого тракта. Хориоидея состоит из слоев крупных, средних и мелких сосудов. Она лишена чувствительных нервных окончаний, поэтому развивающиеся в ней патологические процессы не вызывают болевых ощущений.

Ее функция - трофическая (или питательная), т.е. она является энергетической базой, обеспечивающей восстановление непрерывно распадающегося зрительного пигмента, необходимого для зрения.

Строение хрусталика.Ф-и

Хрусталик (lens) представляет собой прозрачную двояковыпуклую линзу с преломляющей силой 18,0 дптр. Диаметр хрусталика 9-10 мм, толщина 3,5 мм. Он изолирован от остальных оболочек глаза капсулой и не содержит нервов и сосудов. Состоит из хрусталиковых волокон, составляющих вещество хрусталика, и сумки- капсулы и капсулярного эпителия. Образование волокон происходит в течение всей жизни, что приводит к увеличению объема хрусталика. Но чрезмерного увеличения не происходит, т.к. старые волокна теряют воду, уплотняются, и в центре образуется компактное ядро. Поэтому в хрусталике принято выделять ядро (состоящее из старых волокон) и кору. Функции хрусталика: преломляющая и аккомодационная.

Дренажная система

Дренажная система – это основной путь оттока внутриглазной жидкости.

Внутриглазная жидкость вырабатывается отростками цилиарного тела.

Гидродинамика глаза- Переход внутриглазной жидкости из задней камеры, куда она сначала поступает, в переднюю, в норме не встречает сопротивления. Особую важность представляет отток влаги через

дренажную систему глаза, расположенную в углу передней камеры (место, где роговица переходит в склеру, а радужка – в ресничное тело) и состоящую из трабекулярного аппарата, шлеммова канала, коллектор-

ных каналов, системы интра– и эписклеральных венозных сосудов.

Трабекула имеет сложное строение и состоит из увеальной трабекулы, корнеосклеральной трабекулы и юкстаканаликулярного слоя.

Самый наружный, юкстаканаликулярный слой значительно отличается от других. Он представляет собой тонкую диафрагму из эпителиальных клеток и рыхлой системы коллагеновых волокон, пропитанных мукопо-

лисахаридами. Та часть сопротивления оттоку внутриглазной жидкости, которая приходится на трабекулу, находится именно в этом слое.

Шлеммов канал представляет собой циркулярную щель, расположенную в зоне лимба.

Функция трабекулы и шлеммова канала состоит в поддержании постоянства внутриглазного давления. Нарушение оттока внутриглазной жидкости через трабекулу является одной из основных причин первичной

глаукомы.

Зрительный путь

Топографически зрительный нерв можно подразделить на 4 отдела: внутриглазной, внутриорбитальный, внутрикостный (внутриканальцевый) и внутричерепной (внутримозговой).

Внутриглазная часть представлена диском диаметром 0,8 мм новорожденных и 2 мм у взрослых. Цвет диска желтовато-розовый (у маленьких детей сероватый), его контуры четкие, в центре имеется воронкообразное углубление белесоватого цвета (экскавация). В области экскавации входит центральная артерия сетчатки и выходит центральная вена сетчатки.

Внутриорбитальная часть зрительного нерва, или его начальный мякотный отдел, начинается сразу после выхода из решетчато пластинки. Он сразу приобретает соединительнотканную (мягкую оболочку, нежное паутинное влагалище и наружную (твердую) оболочку. Зрительный нерв (n. opticus), покрытый обо-

лочками. Внутриорбитальная часть имеет длину 3 см и S-образный изгиб. Такие

размеры и форма способствуют хорошей подвижности глаза без натяжения волокон зрительного нерва.

Внутрикостная (внутриканальцевая) часть зрительного нерва начинается от зрительного отверстия клиновидной кости (между телом и корнями ее малого

крыла), проходит по каналу и заканчивается у внутричерепного отверстия канала. Длина этого отрезка около 1 см. Он теряет в костном канале твердую оболочку

и покрыт только мягкой и паутинной оболочками.

Внутричерепной отдел имеет длину до 1,5 см. В области диафрагмы турецкого седла зрительные нервы сливаются, образуя перекрест – так называемую

хиазму. Волокна зрительного нерва от наружных (височных) отделов сетчатки обоих глаз не перекрещиваются и идут по наружным участкам хиазмы кзади, а во-

локна от внутренних (носовых) отделов сетчатки полностью перекрещиваются.

После частичного перекреста зрительных нервов в области хиазмы образуются правый и левый зрительные тракты. Оба зрительных тракта, дивергируя, на-

правляются к подкорковым зрительным центрам – латеральным коленчатым телам. В подкорковых центрах замыкается третий нейрон, начинающийся в мультиполярных клетках сетчатки, и заканчивается так называемая периферическая часть зрительного пути.

Таким образом, зрительный путь соединяет сетчатку с головным мозгом и образован из аксонов ганглиозных клеток, которые, не прерываясь, доходят до наружного коленчатого тела, задней части зрительного бугра и переднего четверохолмия, а также из центробежных волокон, являющихся элементами обратной связи. Подкорковым центром служат наружные коленчатые тела. В нижнетемпоральной части диска зрительного нерва сосредоточены волокна папилломакулярного пучка.

Центральная часть зрительного анализатора начинается от крупных длинноаксонных клеток подкорковых зрительных центров. Эти центры соединяются зрительной лучистостью с корой шпорной борозды на

медиальной поверхности затылочной доли мозга, проходя при этом заднюю ножку внутренней капсулы, что соответствует в основном полю 17 по Бродману коры

головного мозга. Эта зона является центральной частью ядра зрительного анализатора. При повреждении полей 18 и 19 нарушается пространственная ориентация или возникает «душевная» (психическая) слепота.

Кровоснабжение зрительного нерва до хиазмы осуществляется ветвями внутренней сонной артерии. Кровоснабжение внутриглазной части зрительно-

го нерва осуществляется из 4 артериальных систем: ретинальной, хориоидальной, склеральной и менингеальной. Основными источниками кровоснабжения являются ветви глазничной артерии (центральная ар-

терия сетчатки, задние короткие ресничные артерии),веточки сплетения мягкой мозговой оболочки. Преламинарный и ламинарный отделы диска зри-

тельного нерва получают питание из системы задних цилиарных артерий.

Хотя эти артерии не относятся к сосудам концевого типа, анастомозы между ними недостаточны и кровоснабжение хориоидеи и диска сегментарное. Следовательно, при окклюзии одной из артерий нарушается питание соответствующего сегмента хориоидеи и диска зрительного нерва.

Таким образом, выключение одной из задних ресничных артерий или ее малых ветвей вызовет выключение сектора решетчатой пластинки и преламинар-

ной части диска, что проявится своеобразным выпадением полей зрения. Такое явление наблюдается при передней ишемической оптикопатии.

Основными источниками кровоснабжения решетчатой пластинки являются задние короткие ресничные

артерии. Сосуды, питающие зрительный нерв, принадлежат к системе внутренней сонной артерии. Ветви наружной сонной артерии имеют многочисленные анастомозы с ветвями внутренней сонной артерии. Почти весь отток крови как из сосудов диска зрительного нерва, так и из ретроламинарной области осуществляется в систему центральной вены сетчатки.

Конъюнкктивиты

Воспалительные заболевания конъюнктивы.

Бактериальный к-т . Жалобы: светобоязнь, слезотечение чувство жжения и тяжести в глазах.

Клин. Проявления: выраженная конъюнктив. Инъекция (красный глаз), обильное слизисто-гнойное отделяемое, отек. Заболевание начинается на одном и переходит на другой глаз.

Осложнения: точечные серые роговичные инфильтраты, кот. расп. цепочкой вокруг лимба.

Лечение: частое промывание глаз дез. растворами, частое закапывание капель, мази при осложнениях. После стихания о. восп. Гормоны и НПВП.

Вирусный к-т. Жалобы: Возд-кап. путь передачи. О.начало, часто предшествуют катаральные проявления ВДП. Повыш. темп. тела, насморк, гол. Боль, увел л/узлов, светобоязнь, слезотечение, мало или нет отделяемого, гиперемия.

Осложнения: точечный эпителиальный кератит, исход благоприятный.

Лечение: Противовирус. препараты, мази.

Строение века. Функции

Веки (palpebrae) представляют собой подвижные наружные образования, защищающие глаз от внешних воздействий во время сна и бодрствования (рис. 2,3).

Рис. 2. Схема сагиттального разреза через веки и

передний отдел глазного яблока

1 и 5 - верхний и нижний конъюнктивальные своды; 2 – конъюнктива века;

3 – хрящ верхнего века с мейбомиевыми железами; 4 – кожа нижнего века;

6 – роговица; 7 – передняя камера глаза; 8 – радужка; 9 – хрусталик;

10 – циннова связка; 11 – цилиарное тело

Рис. 3. Сагиттальный разрез верхнего века

1,2,3,4 – пучки мышц века; 5,7 – добавочные слезные железы;

9 – задний край века; 10 – выводной проток мейбомиевой железы;

11 – ресницы; 12 - тарзоорбитальная фасция (за ней жировая клетчатка)

Снаружи они покрыты кожей. Подкожная клетчатка рыхлая и лишена жира, этим объясняется легкость появления отеков. Под кожей расположена круговая мышца век, благодаря которой происходит смыкание глазной щели и зажмуривание век.

Позади мышцы находится хрящ века (tarsus) , в толще которого имеются мейбомиевы железы, продуцирующие жировой секрет. Их выводные протоки выходят точечными отверстиями в интермаргинальное пространство - полоску ровной поверхности между передним и задним ребром век.

На переднем ребре в 2-3 ряда растут ресницы. Веки соединяются наружной и внутренней спайкой, образуяглазную щель. Внутренний угол притуплен подковообразным изгибом, ограничивающим слезное озеро, в котором находится слезное мясцо и полулунная складка. Длина глазной щели около 30 мм, ширина 8-15 мм. Задняя поверхность век покрыта слизистой оболочкой - конъюнктивой. Спереди она переходит в эпителий роговицы. Место перехода конъюнктивы века в конъюнктиву гл. яблока – свод.

Ф-и: 1. Защита от механических повреждений

2. увлажняющая

3. участвует в процессе образования слезы и формирования слезной пленки

Ячмень

Ячмень – острое гнойное воспаление волосяного мешочка. Характеризуется возникновением на ограниченном участке края века болезненного покраснения и припухлости. Через 2-3 дня в центре воспаления появляется гнойная точка, образуется гнойная пустула. На 3-4 день она вскрывается, и из нее выходит гнойное содержимое.

В самом начале заболевания болезненную точку надо смазать спиртом или 1% р-ром бриллиантового зеленого. При развитии заболевания – противобактериальные капли и мази, ФТЛ, сухое тепло.

Блефарит

Блефарит – воспаление краев век. Наиболее частое и упорное заболевание. Возникновению блефарита способствуют неблагоприятные санитарно-гигиенические условия, аллергическое состояние организма, некорригированные аномалии рефракции, внедрение в волосяной мешочек клеща демодекс, повышение секреции мейбомиевых желез, желудочно-кишечные заболевания.

Начинается блефарит с покраснение краев век, появления зуда и пенистого отделяемого в углах глаз, особенно вечером. Постепенно края век утолщаются, покрываются чешуйками и корочками. Зуд и ощущение засоренности глаз усиливаются. При отсутствии лечения у корня ресниц образуются кровоточащие язвочки, нарушается питание ресниц, и они выпадают.

Лечение блефарита включает в себя устранение факторов, способствующих его развитию, туалет век, массаж, закладываение противовоспалительных и витаминных мазей.

Иридоциклит

Иридоциклит начинается с ирита - воспаления радужки.

Клиническая картина иридоциклита проявляется прежде всего резкой болью в глазу и соответствующей половине головы, усиливающейся по ночам. По-

явление болей связано с раздражением цилиарных нервов. Раздражение цилиарных нервов рефлекторным путем вызывает появление фотофобии (блефароспазма и слезотечения). Возможно нарушение зрения, хотя в начале заболевания зрение может быть нормальным.

При развившемся иридоциклите изменяется цвет радужки-

в связи с повышением проницаемости расширенных сосудов радужки и попаданием в ткань эритроцитов, которые разрушаются. Этим, а также инфильтрацией радужки объясняются и два других симптома – стушеванность рисунка радужки и миоз - сужение зрачка.

При иридоциклите появляется перикорнеальная инъекция . Болевая реакция на свет усиливается в момент аккомодации и конвергенции. Для определения этого симптома больной должен посмотреть вдаль, а затем быстро на кончик своего носа; при этом возникает резкая боль. В неясных случаях этот фактор, помимо других признаков, способствует дифференциальной диагностике с конъюнктивитом.

Почти всегда при иридоциклитах определяются преципитаты, оседающие на задней поверхности роговицы в нижней половине в виде треугольника верши-

ной кверху. Они представляют собой комочки экссудата, содержащие лимфоциты, плазматические клетки, макрофаги.

Следующим важным симптомом иридоциклита является образование задних синехий – спаек радужной оболочки и передней капсулы хрусталика. Набух-

шая, малоподвижная радужка плотно соприкасается с передней поверхностью капсулы хрусталика, поэтому для сращения достаточно небольшого количества экссудата, особенно фибринозного.Глубина передней камеры становится неравномерной (камера глубокая в центре и мелкая по периферии), вследствие нарушения оттока внутриглазной жидкости возможно развитие вторичной глаукомы.

При измерении внутриглазного давления констатируют нормо– или гипотонию (при отсутствии вторичной глаукомы). Возможно реактивное повышение внутри-

глазного давления.

Последним постоянным симптомом иридоциклитов служит появление экссудата в стекловидном теле, вызывающего диффузные или хлопьевидные плавающие помутнения.

Хориоидит

Хориоидит характеризуется отсутствием болевого синдрома. Возникают жалобы, характерные для поражения заднего отдела глаза: вспышки и мерцания перед глазом (фотопсии), искажение рассматриваемых предметов (метаморфопсии), ухудшение сумеречного зрения (гемералопия).

Для диагностики необходим осмотр глазного дна. При офтальмоскопии видны очаги желтовато-серого цвета, различной формы и величины. Могут быть кровоизлияния.

Лечение включает общую терапию (направлена на основное заболевание), инъекции кортикостероидов, антибиотиков, ФТЛ.

Кератиты

Кератиты - воспаление роговицы. В зависимости от происхождения они подразделяются на травматические, бактериальные, вирусные, кератиты при инфекционных заболеваниях и авитаминозные. Наиболее тяжело протекают вирусные герпетические кератиты.

Несмотря на разнообразие клинических форм, у кератитов есть ряд общих симптомов. Среди жалоб отмечаются боли в глазу, светобоязнь, слезотечение, снижение остроты зрения. При осмотре выявляется блефароспазм, или сжатие век, перикорнеальная инъекция (наиболее выражена вокруг роговицы). Имеет место снижение чувствительности роговицы вплоть до ее полной потери – при герпетических. Для кератитов характерно появление на роговице помутнений, или инфильтратов, которые изъязвляются, образуя язвочки. На фоне лечения язвочки выполняются непрозрачной соединительной тканью. Поэтому после глубоких кератитов формируются стойкие помутнения различной интенсивности. И только поверхностные инфильтраты полностью рассасываются.

1. Бактериальный кератит.

Жалобы: боль, светобоязнь, слезотечение, красный глаз, инфильтраты в роговице с прораст. сосудов, гнойная язва с подрытым краем,гипопион (гной в передней камере).

Исход: прободение кнаружи или внутрь, помутнение роговицы, панофтальмит.

Лечение: Стационар быстро!, А/б, ГКК, НПВП, ДТК, кератопластика и.т.д.

2 вирусный кератит

Жалобы:сниж. чувств-сти роговицы, корнеальный с-м выражен незнач., в нач. стадии отделяемое скудное, рецидив. х-р течения, предшествующие герпет. Высыпания, редко васкуляризация инфильтратов.

Исход: выздоровление; облачко-тонкое полупрозрачное ограниченное помутнение сероватого цвета, невидимое невооруженным глазом; пятно –более плотное ограниченное помутнение беловатого цвета; бельмо –плотный толстый непрозрачный рубец роговицы белого цвета. Пятно и облачко можно удалить лазером. Бельмо –кератопластика, кератопротезирование.

Лечение: стац. или амб., п/вирусные, НПВП, а/б, мидриатики, крио-, лазе-, кератопластика и т.д.

Катаракта

Катаракта – любое помутнение хрусталика (частичное или полное), происходит в результате нарушения в нем обменных процессов при возрастных изменениях или заболеваниях.

По локализации различаются катаракты передне- и заднеполярные, веретенообразные, зонулярные, чашеобразные, ядерные, корковые и тотальные.

Класификация:

1. По происхождению-врожденная (ограниченная и не прогрессирует) и приобретенная (старческая, травматическая, осложненная, лучевая, токсическая, на фоне общих заболеваний)

2. По локализации –ядерная, капсулярная, тотальная)

3. По степени зрелости (начальная, незрелая, зрелая, перезрелая)

Причины: нарушение метаболизма, интоксикации, облучение, контузии, проникающие ранения, заболевания глаз.

Возрастная катаракта развивается в результате дистрофических процессов в хрусталике и по локализации может быть корковой (чаще всего), ядерной или смешанной.

При корковой катаракте первые признаки возникают в коре хрусталика у экватора, а центральная часть долго остается прозрачной. Это способствует сохранению относительно высокой остроты зрения длительное время. В клиническом течении различают четыре стадии: начальная, незрелая, зрелая и перезрелая.

При начальной катаракте больных беспокоят жалобы на снижение зрения, «летающих мушек», «туман» перед глазами. Острота зрения находится в пределах 0,1-1,0. При исследовании в проходящем свете катаракта просматривается в виде черных «спиц» от экватора к центру на фоне красного свечения зрачка. Глазное дно доступно офтальмоскопии. Эта стадия может длиться от 2-3 лет до нескольких десятилетий.

На стадии незрелой, или набухающей, катаракты у больного резко снижается острота зрения, так как процесс захватывает всю кору (0,09-0,005). В результате оводнения хрусталика увеличивается его объем, что приводит к миопизации глаза. При боковом освещении хрусталик имеет серо-белый цвет и отмечается «полулунная» тень. В проходящем свете – рефлекс глазного дна неравномерно тусклый. Набухание хрусталика приводит к уменьшению глубины передней камеры. Если угол передней камеры блокируется, то повышается ВГД, развивается приступ вторичной глаукомы. Глазное дно не офтальмоскопируется. Эта стадия может длиться неопределенно долго.

При зрелой катаракте предметное зрение полностью исчезает, определяется лишь светоощущение с правильной проекцией (VIS=1/¥Pr.certa.). Рефлекс глазного дна серый. При боковом освещении – весь хрусталик бело-серый.

Стадия перезрелой катаракты делится на несколько этапов: фаза молочной катаракты, фазы морганиевой катаракты и полное рассасывание, в результате которых от хрусталика остается только одна капсула. Четвертая стадия практически не встречается.

В процессе созревания катаракты могут возникнуть следующие осложнения:

Вторичная глаукома (факогенная) – обусловлена патологическим состоянием хрусталика в стадии незрелой и перезрелой катаракты;

Факотоксический иридоциклит – обусловлен токсико-аллергическим действием продуктов распада хрусталика.

Лечение катаракт подразделяется на консервативное и оперативное.

Консервативное назначается для предупреждения прогрессирования катаракты, что целесообразно на первой стадии. Оно включает витамины в каплях (комплекса В, С, Р и др.), комбинированные препараты (сенкаталин, катахром, квинакс, витайодурол и др.) и препараты, влияющие на обменные процессы в глазу (4% р-р тауфона).

Оперативное лечение заключается в удалении мутного хрусталика хирургическим путем (экстрация катаракты) и факоэмульсификация. Экстракция катаракты может проводиться двумя способами: интракапсулярным – извлечение хрусталика в капсуле и экстракапсулярным – удаление передней капсулы, ядра и хрусталиковых масс при сохранении задней капсулы.

Обычно оперативное лечение проводят на стадии незрелой, зрелой или перезрелой катаракты и при осложнениях. Начальную катаракту иногда оперируют по социальным показаниям (например, профнесоответствии).

Глаукома

Глаукома – это заболевание глаз, которое характеризуется:

Постоянным или периодическим повышением ВГД;

Развитием атрофии зрительного нерва (глаукоматозной экскавации ДЗН);

Возникновением типичных дефектов поля зрения.

При повышении ВГД страдает кровоснабжение оболочек глаза, особенно резко внутриглазной части зрительного нерва. В результате этого развивается атрофия его нервных волокон. Это в свою очередь приводит к возникновению типичных дефектов зрения: снижению остроты зрения, появлению парацентральных скотом, увеличению слепого пятна, сужению поля зрения (особенно с носовой стороны).

Различают три основных типа глаукомы:

Врожденную - вследствие аномалий развития дренажной системы,

Первичную, как результат изменения угла передней камеры (УПК),

Вторичную, как симптом глазных заболеваний.

Наиболее часто встречается первичная глаукома. В зависимости от состояния УПК она подразделяется на открытоугольную, закрытоугольную и смешанную.

Открытоугольная глаукома является следствием дистрофических изменений в дренажной системе глаза, что приводит к нарушению оттока внутриглазной жидкости через УПК. Она отличается незаметным хроническим течением на фоне умеренно повышенного ВГД. Поэтому часто выявляется случайно при осмотрах. При гониоскопии УПК открыт.

Закрытоугольная глаукома возникает в результате блокады УПК корнем радужки, обусловленной функциональным блоком зрачка. Это связано с плотным прилеганием хрусталика к радужке в результате анатомических особенностей глаза: крупный хрусталик, мелкая передняя камера, узкий зрачок у пожилых людей. Эта форма глаукомы характеризуется приступообразным течением и начинается с острого или подострого приступа.

Смешанная глаукома является сочетанием признаков, типичных для двух предыдущих форм.

В развитии глаукомы можно выделить четыре стадии: начальная, развитая, далеко зашедшая и терминальная. Стадия зависит от состояния зрительных функций и ДЗН.

Для начальной, или I стадии, характерно расширение экскавации ДЗН до 0,8, увеличение слепого пятна и парацентральных скотом, незначительное сужение поля зрения с носовой стороны.

При развитой, или II стадии, отмечается краевая экскавация ДЗН и стойкое сужение поля зрения с носовой стороны до 15 о от точки фиксации.

Далеко зашедшая, или III стадия, характеризуется стойким концентрическим сужением поля зрения менее 15 0 от точки фиксации или сохранением отдельных участков поля зрения.

При терминальной, или IV стадии, наступает утрата предметного зрения – наличие светоощущения с неправильной проекцией (VIS=1/¥ pr/incerta) или полная слепота (VIS=0).

Острый приступ глаукомы

Острый приступ возникает при закрытоугольной глаукоме в результате блокирования хрусталиком зрачка. При этом нарушается отток внутриглазной жидкости из задней камеры в переднюю, что приводит к повышению ВГД в задней камере. Следствием этого является выдавливание радужки кпереди («бомбаж») и закрытие корнем радужки УПК. Отток через дренажную систему глаза становится невозможным, и ВГД повышается.

Острые приступы глаукомы возникают обычно под влиянием стрессовых состояний, физических перенапряжений, при медикаментозном расширении зрачка.

Во время приступа больной жалуется на резкие боли в глазу, иррадиирующие в висок и соответствующую половину головы, затуманивание зрения и появление радужных кругов при взгляде на источник света.

При осмотре отмечается застойная инъекция сосудов глазного яблока, отек роговицы, мелкая передняя камера, широкий зрачок овальной формы. Подъем ВГД может быть до 50-60 мм.рт.ст и выше. При гониоскопии УПК закрыт.

Лечение необходимо проводить сразу же, как только установлен диагноз. Местно проводят инстилляции миотиков (1% р-р пилокарпина в течение первого часа – каждые 15 минут, II-III час - каждые 30 минут, IV-V час – 1 раз в час). Внутрь - мочегонные (диакарб, лазикс), анальгетики. К отвлекающей терапии относятся горячие ножные ванны. Во всех случаях необходима госпитализация для хирургического или лазерного лечения.

Лечение глаукомы

Консервативное лечение глаукомы складывается из гипотензивной терапии, то есть снижения ВГД (1% р-р пилокарпина, тимолола.) и медикаментозного лечения, направленного на улучшение кровообращения и обменных процессов в тканях глаза (сосудорасширяющие препараты, ангиопротекторы, витамины).

Хирургическое и лазерное лечение подразделяется на несколько методов.

Иридэктомия – иссечение участка радужки, в результате чего устраняются последствия зрачкового блока.

Операции на склеральном синусе и трабекуле: синусотомия – вскрытие наружной стенки шлеммова канала, трабекулотомия – разрез внутренней стенки шлеммова канала, синусотрабекулоэктомия – иссечение участка трабекулы и синуса.

Фистулизирующие операции – создание новых путей оттока из передней камеры глаза в подконъюнктивальное пространство.

Клиническая рефракция

Физическая рефракция – преломляющая сила любой оптической системы.Для получения четкого изображения важна не преломляющая сила глаза, а его способность фокусировать лучи точно на сетчатке. Клиническая рефракция – отношение главного фокуса к центр. ямке сетчатки.

В зависимости от этого соотношения рефракция подразделяется на:

Соразмерную – эмметропия ;

Несоразмерную – аметропия

Каждый вид клинической рефракции характеризуется положением дальнейшей точки ясного видения.

Дальнейшая точка ясного видения (Rp) – точка в пространстве, изображение которой фокусируется на сетчатке в покое аккомодации.

Эмметропия – вид клинической рефракции, при которой задний главный фокус параллельных лучей находится на сетчатке, т.е. преломляющая сила соразмерна длине глаза. Дальнейшая точка ясного видения расположена в бесконечности. Поэтому изображение предметов, находящихся вдали, четкое, и острота зрения высокаяАметропия – клиническая рефракция, при которой задний главный фокус параллельных лучей не совпадает с сетчаткой. В зависимости от его нахождения аметропия подразделяется на миопию и гиперметропию.

Классификация аметропии (по Трону):

Осевая – преломляющая сила глаза в пределах нормы, а длина оси больше или меньше, чем при эмметропии;

Рефракционная – длина оси в пределах нормы, преломляющая сила глаза больше или меньше, чем при эмметропии;

Смешанного происхождения – длина оси и преломляющая сила глаза не соответствует норме;

Комбинационная – длина оси и преломляющая сила глаза в норме, но их сочетание неудачное.

Миопия – вид клинической рефракции, при которой задний главный фокус находится перед сетчаткой, следовательно, преломляющая сила слишком велика и не соответствует длине глаза. Поэтому, чтобы лучи собирались на сетчатке, они должны иметь расходящееся направление, то есть дальнейшая точка ясного видения расположена перед глазом на конечном расстоянии. Острота зрения у миопов снижена. Чем ближе к глазу лежит Rp, тем сильнее рефракция и выше степень миопии.

Степени миопии: слабая – до 3,0 дптр, средняя – 3,25-6,0 дптр, высокая – выше 6,0 дптр.

Гиперметропия – вид аметропии, при которой задний главный фокус находится за сетчаткой, то есть преломляющая сила слишком мала.

Для того, чтобы лучи собирались на сетчатке, они должны иметь сходящееся направление, то есть дальнейшая точка ясного видения расположена за глазом, что возможно только теоретически. Чем дальше за глазом расположена Rp, тем слабее рефракция и выше степень гиперметропии. Степени гиперметропии такие же как при миопии.

Миопия

К причинам развития миопии относятся: наследственность, удлинение ПЗО глаза, первичная слабость аккомодации, ослабление склеры, длительная работа на близком расстоянии, природно-географический фактор.

Схема патогенеза: -ослабление аккомодации

Спазм аккомодации

Ложная М

Развитие истинной М или прогрес-ие имеющейся М

Эмметропический глаз становится миопическим не потому, что он аккомодирует, а потому, что ему трудно длительно аккомодировать.

При ослабленной аккомодации глаз может удлиниться настолько, чтобы в условиях напряженной зрительной работы на близком расстоянии вообще избавить цилиарную мышцу от непосильной деятельности. С увеличением степени близорукости наблюдается еще большее ослабление аккомодации.

Слабость цилиарной мышцы обусловлена недостатком ее кровообращения. А увеличение ПЗО глаза сопровождается еще большим ухудшением местной гемодинамики, что приводит еще большему ослаблению аккомодации.

Процент миопов в районах Заполярья выше, чем в средней полосе. А среди школьников городских школ миопия встречается чаще, чем у сельских школьников.

Различают истинную миопию и ложную.

Истинная миопия

Классификация:

1. По возрастному периоду возникновения:

Врожденная,

Приобретенная.

2. По течению:

Стационарная,

Медленно прогрессирующая (менее 1,0 дптр в год),

Быстро прогрессирующая (более 1,0 дптр в год).

3. По наличию осложнений:

Неосложненная,

Осложненная.

Приобретенная миопия является вариантом клинической рефракции, которая с возрастом, как правило, увеличивается незначительно и не сопровождается заметными морфологическими изменениями. Она хорошо корригируется и не требует лечения. Неблагоприятный прогноз обычно отмечается только при миопии, приобретенной в дошкольном возрасте, так как играет роль склеральный фактор.

ДОКЛАД НА ТЕМУ:

ФИЗИОЛОГИЯ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА.

СТУДЕНТКИ: Путилина М., Аджиева А.

Преподаватель: Бунина Т. П.

Физиология зрительного анализатора

Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа.

Структуры зрительного анализатора:

    Глазное яблоко.

    Вспомогательный аппарат.

Строение глазного яблока:

Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

    Наружная - очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части - роговицы, и задней непрозрачной части белесоватого цвета - склеры.

    Средняя, или сосудистая, оболочка глазного яблока играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие - зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результат взаимодействия гладких мышечных волокон - сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска - «цвет глаз».

    Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi), - сетчатка - рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему. Сетчатка состоит из 10 слоев:

    Пигментный;

    Фотосенсорный;

    Наружная пограничная мембрана;

    Наружный зернистый слой;

    Наружный сетчатый слой;

    Внутренний зернистый слой;

    Внутренний сетчатый;

    Слой ганглиозных клеток;

    Слой волокон зрительного нерва;

    Внутренняя пограничная мембрана

Центральная ямка (желтое пятно). Область сетчатки, в которой находятся одни колбочки (цветочувствительные фоторецепторы); в связи с этим обладает сумеречной слепотой (гемеролопией); для этой области характерны миниатюрные рецептивные поля (одна колбочка – один биполяр – одна ганглиозная клетка), и как следствие, максимальная острота зрения

С функциональной точки зрения оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

Светопреломляющий аппарат

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу, камерную влагу - жидкости передней и задней камер глаза, хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

Хруста́лик (лат. lens) - прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза.

Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование, циркулярно фиксированное к цилиарному телу. Задняя поверхность хрусталика прилегает к стекловидному телу, спереди от него находятся радужка и передняя и задняя камеры.

Максимальная толщина хрусталика взрослого человека примерно 3,6-5 мм (в зависимости от напряжения аккомодации), его диаметр около 9-10 мм. Радиус кривизны передней поверхности хрусталика в покое аккомодации равен 10 мм, а задней - 6 мм, при максимальном напряжении аккомодации передний и задний радиус сравниваются, уменьшаясь до 5,33 мм.

Показатель преломления хрусталика неоднороден по толщине и в среднем составляет 1,386 или 1,406 (ядро) также в зависимости от состояния аккомодации.

В покое аккомодации преломляющая сила хрусталика составляет среднем 19,11 диоптрий, при максимальном напряжении аккомодации - 33,06 дптр.

У новорождённых хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дптр. Дальнейший рост его происходит, в основном, за счет увеличения диаметра.

Аккомодационный аппарат

Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре - зрачком - и ресничное тело с ресничным пояском хрусталика.

Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.

Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

цинновы связки (ресничные пояски). Отростки ресничного тела, направляются к капсуле хрусталика. При расслабленном состоянии гладкой мускулатуры ресничного тела оказывают максимальное растягивающее действие на капсулу хрусталика, в результате чего он максимально уплощен, а преломляющая его способность минимальна (это имеет место в момент рассматривания предметов, находящихся на большом удалении от глаз); в условиях сокращенного состояния гладкой мускулатуры ресничного тела имеет место обратная картина (при рассматривании близко расположенных от глаз предметов)

передняя и задняя камеры глаза соответственно, заполнены водянистой влагой.

Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки

Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов – палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками.

Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов, и затем синоптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует в ее анализе и переработке.

ВСПОМОГАТЕЛЬНЫЙ АППАРАТ

Вспомогательный аппарат глаза включает защитные приспособления и мышцы глаза. К защитным приспособлениям относятся веки с ресницами, конъюнктива и слезный аппарат.

Веки представляют собой парные кожно-конъюктивные складки, прикрывающие спереди глазное яблоко. Передняя поверхность века покрыта тонкой, легко собирающейся в складки кожей, под которой лежит мышца века и которая на периферии переходит в кожу лба и лица. Задняя поверхность века выстлана конъюнктивой. Веки имеют передние края век, несущие ресницы и задние края век, переходящие в конъюнктиву.

Между верхними и нижними веками имеется щель век с медиальным и латеральным углами. У медиального угла щели век передний край каждого века имеет небольшое возвышение - слезный сосочек, на вершине которого точечным отверстием открывается слезный каналец. В толще век заложены хрящи, тесно сращенные с конъюнктивой и в значительной мере определяющие форму век. Медиальной и латеральной связками век эти хрящи укреплены к краю глазницы. В толще хрящей залегают довольно многочисленные (до 40) железы хряща, протоки которых открываются вблизи свободных задних краев обоих век. У лиц, работающих в пыльных цехах, часто наблюдается закупорка этих желез с последующим их воспалением.

Мышечный аппарат каждого глаза состоит из трех пар антагонистически действующих глазодвигательных мышц:

Верхней и нижней прямых,

Внутренней и наружной прямых,

Верхней и нижней косых.

Все мышцы, за исключением нижней косой, начинаются, кaк и мышцы, поднимающие верхнее веко, от сухожильного кольца, расположенного вокруг зрительного канала глазницы. Затем четыре прямые мышцы направляются, постепенно дивергируясь, кпереди и после прободения теноновой капсулы налетаются своими сухожилиями в склеру. Линии их прикрепления находятся на разном расстоянии от лимба: внутренней прямой - 5,5-5,75 мм, нижней - 6-6,6 мм, наружной - 6,9-7 мм, верхней - 7,7-8 мм.

Верхняя косая мышца от зрительного отверстия направляется к костно-сухожильному блоку, расположенному у верхневнутреннего угла глазницы и, перекинувшись через него, идет кзади и кнаружи в виде компактного сухожилия; прикрепляется к склере в верхненаружном квадранте глазного яблока на расстоянии 16 мм от лимба.

Нижняя косая мышца начинается от нижней костной стенки глазницы несколько латеральнее места входа в носослезный канал, идет кзади и кнаружи между нижней стенкой глазницы и нижней прямой мышцей; прикрепляется к склере на расстоянии 16 мм от лимба (нижненаружный квадрант глазного яблока).

Внутренняя, верхняя и нижняя прямые мышцы, а также нижняя косая мышца иннервируются веточками глазодвигательного нерва, наружная прямая - отводящего, верхняя косая - блокового.

При сокращении той или иной мышцы глаз совершает движение вокруг оси, которая перпендикулярна ее плоскости. Последняя проходит вдоль мышечных волокон и пересекает точку вращения глаза. Это означает, что у большинства глазодвигательных мышц (за исключением наружной и внутренней прямых мышц) оси вращения имеют тот или иной угол наклони по отношению к исходным координатным осям. Вследствие этого при сокращении таких мышц глазное яблоко совершает сложное движение. Так, например, верхняя прямая мышца при среднем положении глаза поднимает его кверху, ротирует кнутри и несколько поворачивает к носу. Вертикальные движения глаза будут увеличиваться по мере уменьшения угла расхождения между сагиттальной и мышечной плоскостями, т. е. при повороте глаза кнаружи.

Все движения глазных яблок подразделяют на сочетанные (ассоциированные, конъюгированные) и конвергентные (фиксация разноудаленных объектов за счет конвергенции). Сочетанные движения - это те, которые направлены в одну сторону: вверх, вправо, влево и т. д. Эти движения совершаются мышцами - синергистами. Так, например, при взгляде вправо в правом глазу сокращается наружная, а в левом - внутренняя прямые мышцы. Конвергентные движения реализуются посредством действия внутренних прямых мышц каждого глаза. Разновидностью их являются фузионные движения. Будучи очень мелкими, они осуществляют особо точную фиксационную установку глаз, благодаря чему создаются условия для беспрепятственного слияния в корковом отделе анализатора двух сетчаточных изображений в один цельный образ.

Восприятие света

Мы воспринимаем свет благодаря тому, что его лучи проходят через оптическую систему глаза. Там возбуждение обрабатывается и передаётся в центральные отделы зрительной системы. Сетчатка - это сложная оболочка глаза, содержащая несколько слоев клеток, различных по форме и функциям.

Первый (внешний) слой - пигментный, состоит из плотно расположенных эпителиальных клеток, содержащих чёрный пигмент фусцин. Он поглощает световые лучи, способствуя более четкому изображению предметов. Второй слой - рецепторный, образован светочувствительными клетками - зрительными рецепторами - фоторецепторами: колбочками и палочками. Они воспринимают свет и превращают его энергию в нервные импульсы.

Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Электронно-микроскопические исследования выявили, что наружный сегмент каждой палочки состоит из 400-800 тонких пластинок, или дисков, диаметром около 6 мкм. Каждый диск представляет собой двойную мембрану, состоящую из мономолекулярных слоев липидов, находящихся между слоями молекул белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрилл. Внутренний сегмент переходит в отросток, помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку.

У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях ярой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения.

Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становиться все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цвета, то в сумерках человек цвета не различает.

Слепое пятно. Место входа зрительного нерва в глазное яблоко – сосок зрительного нерва – не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно. В существовании слепого пятна можно убедиться с помощью опыта Мариотта.

Мариотт проделывал опыт так: помещал двух вельмож на расстоянии 2 м друг против друга и просил их рассматривать одним глазом некоторую точку сбоку,- тогда каждому казалось, что у его визави нет головы.

Как это ни странно, но люди только в XVII веке узнали, что на сетчатке их глаз существует «слепое пятно», о котором никто раньше не думал.

Нейроны сетчатки. Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток.

Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, попадает на волокна зрительного нерва через нервные клетки – биполярные и ганглиозные.

Восприятие изображения предметов

Чёткое изображение предметов на сетчатке обеспечиваются сложной уникальной оптической системой глаза, состоящей из роговицы, жидкостей передней и задней камер, хрусталика и стекловидного тела. Световые лучи проходят сквозь перечисленные среды оптической системы глаза и преломляются в них согласно законам оптики. Основное значение для преломления света в глазу имеет хрусталик.

Для чёткого восприятия предметов необходимо, чтобы их изображение всегда фокусировалось в центре сетчатки. Функционально глаз приспособлен для рассмотрения удалённых предметов. Однако люди могут чётко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну, а соответственно и преломляющую силу глаза. Способность глаза приспосабливаться к ясному видению предметов, расположенных на разном расстоянии, называют аккомодацией. Нарушение аккомодационной способности хрусталика приводит к нарушению остроты зрения и возникновения близорукости или дальнозоркости.

Парасимпатические преганглионарные волокна исходят из ядра Вестфаля-Эдингера (висцеральная часть ядра III пары черепного нерва) и затем идут в составе III пары черепных нервов к ресничному ганглию, который лежит сразу позади глаза. Здесь преганглионарные волокна образуют синапсы с постганглионарными парасимпатическими нейронами, которые, в свою очередь, посылают волокна в составе ресничных нервов в глазное яблоко.

Эти нервы возбуждают: (1) ресничную мышцу, которая регулирует фокусирование хрусталиков глаз; (2) сфинктер радужной оболочки, сужающий зрачок.

Источником симпатической иннервации глаза являются нейроны боковых рогов первого грудного сегмента спинного мозга. Выходящие отсюда симпатические волокна входят в симпатическую цепочку и поднимаются к верхнему шейному ганглию, где они синаптически связываются с ганглионарными нейронами. Их постганглионарные волокна проходят вдоль поверхности каротидной артерии и далее вдоль более мелких артерий и достигают глаза.

Здесь симпатические волокна иннервируют радиальные волокна радужной оболочки (которые расширяют зрачок), а также некоторые внеглазные мышцы глаза (обсуждаются далее в связи с синдромом Горнера).

Механизм аккомодации, фокусирующий оптическую систему глаза, важен для поддержания высокой остроты зрения. Аккомодация осуществляется в результате сокращения или расслабления ресничной мышцы глаза. Сокращение этой мышцы увеличивает преломляющую силу хрусталика, а расслабление снижает ее.

Аккомодация хрусталика регулируется механизмом отрицательной обратной связи, который автоматически регулирует преломляющую силу хрусталика, чтобы достичь высочайшей степени остроты зрения. Когда глаза, сфокусированные на некотором отдаленном объекте, должны внезапно сфокусироваться на ближнем объекте, хрусталик обычно аккомодирует в течение менее 1 сек. Хотя точный механизм регуляции, вызывающий это быстрое и точное фокусирование глаза, не ясен, известны некоторые из его особенностей.

Во-первых, при внезапном изменении расстояния до точки фиксации преломляющая сила хрусталика изменяется в направлении, соответствующем достижению нового состояния фокуса, в пределах доли секунды. Во-вторых, разные факторы помогают изменить силу хрусталика в нужном направлении.

1. Хроматическая аберрация. Например, лучи красного цвета фокусируются слегка сзади по отношению к голубым лучам, поскольку голубые лучи сильнее преломляются хрусталиком, чем красные. Глаза, по-видимому, способны определить, какой из этих двух типов лучей лучше сфокусирован, и этот «ключ» передает информацию аккомодирующему механизму для увеличения или уменьшения силы хрусталика.

2. Конвергенция. При фиксации глаз на ближнем объекте глаза конвергируют. Нервные механизмы конвергенции одновременно посылают сигнал, увеличивающий преломляющую силу хрусталика глаза.

3. Ясность фокуса в глубине ямки по сравнению с ясностью фокуса по краям различна, поскольку центральная ямка лежит несколько глубже, чем остальная сетчатка. Предполагают, что это различие также дает сигнал, в каком направлении следует изменить силу хрусталика.

4. Степень аккомодации хрусталика все время слегка колеблется с частотой до 2 раз в секунду. При этом визуальное изображение становится яснее, когда колебание силы хрусталика изменяется в правильном направлении, и менее ясным, когда сила хрусталика изменяется в неправильном направлении. Это может дать быстрый сигнал к выбору правильного направления изменения силы хрусталика для обеспечения соответствующего фокуса. Области коры большого мозга, регулирующие аккомодацию, функционируют в тесной параллельной связи с областями, контролирующими фиксационные движения глаз.

При этом анализ зрительных сигналов осуществляется в областях коры, соответствующих полям 18 и 19 по Бродману, а двигательные сигналы к ресничной мышце передаются через претектальную зону ствола мозга, затем - через ядро Вестфаля-Эдингера и в итоге - по парасимпатическим нервным волокнам к глазам.

Фотохимические реакции в рецепторах сетчатки

В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.

Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.

При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.

Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.

Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.

Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.

Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

Восприятие цвета

Восприятие цвета начинается с поглощения света колбочками - фоторецепторами сетчатки (фрагмент внизу). Колбочка отвечает на сигнал всегда одинаково, но ее активность передается двум различным типам нейронов, называемым биполярными клетками ON- и OFF-типа, которые, в свою очередь, соединены с ганглиозными клетками ON- и OFF-типа, а их аксоны несут сигнал в мозг - сначала в латеральное коленчатое тело, а оттуда далее в зрительную кору

Многоцветность воспринимается благодаря тому, что колбочки реагируют на определенный спектр света изолированно. Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, второго - на зелёный и третьего - на синий. Эти цвета называют основными. Под действием волн различной длины колбочки каждого типа возбуждаются неодинаково.

Самой большой длине волны соответствует красный цвет, самой короткой – фиолетовый;

Цвета между красным и фиолетовым располагаются в известной последовательности красный- оранжевый – желтый – зеленый – голубой – синий – фиолетовый.

Наш глаз воспринимает длины волн только в диапозоне 400-700 нм. Фотоны с длиной волн выше 700 нм относятся к инфракрасному излучению, воспринимаются в форме тепла. Фотоны с длиной волн ниже 400 нм относят к ультрафиолетовому излучению, они из-за своей высокой энергии способны оказывать повреждающее действие на кожу и слизистые; после ультрафиолетового идет уже рентгеновское и гамма-излучение.

Вследствие этого каждая длина волны воспринимается как особый цвет. Например, когда мы смотрим на радугу, то самыми заметными для нас кажутся основные цвета (красный, зелёный, синий).

Оптическим смешением основных цветов можно получить остальные цвета и оттенки. Если все три типа колбочек возбуждаются одновременно и одинаково, возникает ощущение белого цвета.

Сигналы о цвете передаются по медленным волокнам ганглиозных клеток

В результате смешения сигналов, несущих информацию об окраске и форме, человек может увидеть то, чего нельзя было бы ожидать на основе анализа длины волны света, отраженного от предмета, что наглядно демонстрируют иллюзии.

Зрительные пути:

Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.

Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза.

Зрительный анализатор является важнейшим среди других, потому что дает человеку более 80% всей информации об окружающей среде.

Зрительная сенсорная система состоит из трех частей:

Проводниковой, состоящий из чувствительного правого и левого зрительного нерва, частичного перекреста нервных зрительных путей правого и левого глаза (хиазма), зрительного тракта, вносят много переключений, когда проходит через зрительные бугорки чотиригорбикового тела среднего мозга и таламус (латеральные коленчатые тела) промежуточного мозга и далее продолжается до коры головного мозга;

Центральной, находящийся в затылочных областях коры головного мозга и где именно расположены высшие зрительные центры.

Благодаря хиазмам зрительных путей от правого и левого глаза достигается эффект надежности зрительного анализатора, так как воспринимаемая глазами зрительная информация делится примерно поровну таким образом, что от правых половин обоих глаз она собирается в один зрительный тракт, который направляется в центр зрения левого полушария коры головного мозга, а от левых половин обоих глаз — в центр зрения правого полушария коры головного мозга.

Функцией зрительного анализатора является зрение , то бы то способность воспринимать свет, величину, взаимное расположение и расстояние между предметами с помощью органов зрения, каким является пара глаз.

Каждый глаз содержится в углублении (глазнице) черепа и имеет вспомогательный аппарат глаза и глазное яблоко.

Вспомогательный аппарат глаза обеспечивает защиту и движения глаз и включает: брови, верхние и нижние веки с ресницами, слезная железы и двигательные мышцы. Глазное яблоко сзади окружено жировой клетчаткой, которая играет роль мягкой эластичной подушки. Над верхним краем глазниц размещены брови, волосы которых защищает глаза от жидкости (пота, воды), что может течь по лбу.

Спереди глазное яблоко покрыто верхняя и нижняя веки, защищающие глаз спереди и способствуют его увлажнению. Вдоль переднего края век растут волосы, что образует ресницы, раздражение которых вызывает защитный рефлекс смыкания век (закрывание глаз). Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта кон ‘юнктивою (слизистой оболочкой). В верхнем латеральном (внешнем) края каждой глазницы расположена слезная железа, которая выделяет жидкость, охраняющий глаз от высыхания и обеспечивает чистоту склеры и прозрачность роговицы. Равномерному распределению слезной жидкости на поверхности глаза способствует мигание век. Каждое глазное яблоко приводят в движение шесть мышц, из которых четыре называются прямыми, а два косыми. В систему защиты глаза также принадлежат роговичный (прикосновение к роговице или попадания в глаз соринки) и зрачковый запирающие рефлексы.

Глаз или глазное яблоко, имеет шаровидную форму с диаметром до 24 мм и массой до 7-8 г.

Стенки глазного яблока образованы тремя оболочками: наружной (фиброзной), средней (сосудистой) и внутренней (сетчаткой).

Внешняя белая оболочка, или склера образована прочной непрозрачной соединительной тканью белого цвета, которая обеспечивает определенную форму глаза и защищает его внутренние образования. Передняя часть склеры переходит в прозрачную роговицу, которая защищает от повреждения внутренность глаза и пропускает в его середину свет. Роговица не содержит кровеносных сосудов, питается за счет межклеточной жидкости и имеет форму выпуклой линзы.

Под склерой находится средняя или сосудистая оболочка «имеющая толщину 0,2-0,4 мм и плотно пронизана большим количеством кровеносных сосудов. Функция сосудистой оболочки состоит в обеспечении питанием других оболочек и образований глаза. Эта оболочка в передней части переходит в радужку, имеющий центральный округлое отверстие (зрачок) и радужную оболочку, богатую пигмент меланин, от количества которого цвет радужки может быть от голубого до черного. В переднем отделе глазного яблока сосудистая оболочка переходит в вийчасте тело, содержащее ресничных мышц, который н вязаный с хрусталиком и регулирующая его кривизну. Диаметр зрачка может изменяться в зависимости от освещенности. Если вокруг больше света, то зрачок сужается, а когда меньше — она ​​расширяется и становится максимально расширенной в полной темноте. Диаметр зрачка изменяется рефлекторно (зрачковый рефлекс) благодаря сокращение не исполосованных мышц радужки, одни из которых иннервируются симпатичной (расширяют), а другие — парасимпатической (сужают) нервной системой.

Внутренняя оболочка глаза представлена ​​сетчаткой, толщина которой 0,1-0,2 мм. Эта оболочка состоит из многих (до 12) слоев различных по форме нервных клеток, которые, соединяясь между собой своими отростками, сплетают ажурную сетку (отсюда ее название). Различают следующие основные слои сетчатки:

Внешний пигментный слой (1), что образованный эпителием и содержит пигмент фуксин. Этот пигмент поглощает свет, проникающий в глаз и тем препятствует его отражению и рассеянию, а это способствует четкости зрительного восприятия. Отростки пигментных клеток также окружают фоторецепторы глаза, участвуя в их обмене веществ и в синтезе зрительных пигментов;

С физиологической точки зрения сетчатка является периферической частью зрительного анализатора, рецепторы которого (палочки и колбочки) именно и воспринимают световые образы.

Основная масса колбочек находится в центральной части сетчатки, образуя так называемую желтое пятно. Желтое пятно является местом наилучшего видение при дневном освещении и обеспечивает центральный зрение, а также восприятие световых волн разной длины, что является основой выделения (распознавания) цветов. Остальные сетчатки в основном представлена ​​палочками и способна воспринимать только черно-белые образы (в том числе в темноте), а также обусловливает периферическое зрение. С удалением от центра глаза количество колбочек уменьшается, а палочек возрастает. Место, где от сетчатки отходит зрительный нерв не содержит фоторецепторов, а потому и не воспринимает света и называется слепым пятном.

Ощущение света является процессом формирования субъективных образов, возникающих в результате воздействия электромагнитных световых волн длиной от 390 до 760 нм (1 нм, где нм — наномет составляет 10-9 метра) на рецепторные структуры зрительного анализатора. Из этого следует, что первым этапом в формировании светоощущение является трансформация энергии раздражителя в процесс нервного возбуждения. Это и происходит в сетчатой ​​оболочке глаза.

Каждый фоторецептор состоит из двух сегментов: внешнего, содержащей светочувствительные (светло-реактивный) пигмент, и внутреннего, где расположены органеллы клетки. В палочках содержится пигмент пурпурного цвета (родопсин), а в колбочках пигмент фиолетового цвета (йодопсин). Зрительные пигменты представляют собой высокомолекулярные соединения, состоящие из окисленного витамина А (ретиналя) и белка опсина. В темноте оба пигменты находятся в неактивной форме. Под действием квантов света пигменты мгновенно распадаются («выцветают») и переходят в активную ионную форму: ретиналь отщепляется от опсина. Результате фотохимических процессов в фоторецепторах глаза при воздействии света возникает рецепторный потенциал, основанный на гиперполяризации мембраны рецептора. Это отличительная особенность зрительных рецепторов, так как активация рецепторов других органов чувств чаще всего выражается в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красных цветов рецепторный потенция п больше выражен у фоторецепторах центральной части сетчатки, а синего — в периферической. Синаптические окончания фоторецепторов конвертируют на биполярные нейроны сетчатки, которые являются первыми нейронами проводникового отдела зрительного анализатора. Аксоны биполярных клеток в свою очередь конвертируют на ганглиозные нейроны (второй нейрон). В результате на каждую ганглиозные клетки могут конвертировать около 140 палочек и 6 колбочек, При этом, чем ближе к желтого пятна, тем меньше фоторецепторов конвертирует на одну ганглиозных клеток. В области желтого пятна конвергенция почти не осуществляется и количество колбочек фактически равно количеству биполярных и ганглиозных нейронов. Именно это объясняет высокую остроту зрения в центральных отделах сетчатки.

Периферия сетчатки отличается большой чувствительностью к недостаточному света. Это, скорее всего, обусловлено тем, что до 600 палочек здесь конвертируют через биполярные нейроны на одну и ту же ганглиозных клеток. В результате сигналы от огромного количества палочек суммируются и вызывают более интенсивную стимуляцию биполярных нейронов.

В сетчатке, кроме вертикальных, существуют также латеральные нейронные связи. Латеральная взаимодействие рецепторов осуществляется горизонтальными клетками. Биполярные и ганглиозные нейроны взаимодействуют между собой за счет связей, образованных коллатералям дендритов и аксонов самих этих клеток, а также с помощью амакринових клеток.

Горизонтальные клетки сетчатки обеспечивают регуляцию передачи импульсов между фоторецепторами и биполярными нейронами, регулируя этим восприятие цветов, а также адаптацию глаза к различной степени освещенности. По характеру восприятия световых раздражений горизонтальные клетки делятся на два типа: 1 — тип, в котором потенциал возникает при действии любой волны спектра света, который воспринимает глаз, 2 -! тип (цветовой), в котором знак потенциала зависит от длины волны (например, красный свет дает деполяризацию, а синее — гиперполяризацию).

В темноте молекулы родопсина восстанавливаются сообщением витамина А с белком опсинов. Недостаток витамина Л нарушает образование родопсина и обуславливает резкое ухудшение сумеречного зрения (возникает куриная слепота) тогда как днем ​​зрение может оставаться нормальным. Колбочковых и палочковой светло-воспринимающие системы глаза обладают неодинаковой и спектральную чувствительность. Колбочки глаза, например, наиболее чувствительные к излучению с длиной волны 554 нм, а палочки — 513 нм. Это проявляется в изменении чувствительности глаза в дневное и сумеречное или ночное время. Например, в день в саду яркими кажутся плоды, имеющие желтое, оранжевое или красное окрашивание, тогда как ночью более различаются зеленые плоды.

По теории цветового зрения, которую впервые предложил М. В. Ломоносов (1756), в сетчатке глаза содержится 3виды колбочек, в каждой из которых есть особое вещество, чувствительное к волнам световых лучей определенной довжини1: одним из них присуща чувствительность к красному цвету, другим к зеленому, третьим — до фиолетового. В зрительном нерве являются соответственно 3 особые группы нервных волокон, каждые из которых проводят афферентные импульсы от одной из указанных групп колбочек. В обычных условиях лучи действуют не на одну группу колбочек, а одновременно на 2 или Из группы, при этом волны различной длины возбуждают их в разной степени, что обуславливает восприятие цветовых оттенков. Первичное различение цветов происходит в сетчатке, но окончательно ощущение воспринятого цвета формируется в высших зрительных центрах и, в определенной мере, является результатом предварительного обучения.

Иногда у человека частично или полностью нарушается восприятие цвета, что обуславливает цветовую слепоту. При полной цветовой слепоте человек видит все предметы окрашенными в серый цвет. Частичное нарушение цветового зрения получило название дальтонизма по имени английского химика Джон Дальтон, вернее Джон Долгой (1766-1844), который имел такое функциональное отклонения в состоянии своего зрения и первый его описал. Дальтоники, как правило, не различают красные и зеленые цвета. Дальтонизм является наследственной болезнью и чаще нарушения цветового зрения наблюдается у мужчин (6-8%), тогда как среди женщин это бывает всего в 0,4-0,5% случаев.

В состав внутреннего ядра глазного яблока входят: передняя камера глаза, задняя камера глаза, хрусталик, водянистая влага передней и задней камер глазного яблока и склисте тело.

Хрусталик прозрачен эластичным образованием, которое имеет форму двояковыпуклой линзы причем задняя поверхность более выпуклая, чем передняя. Хрусталик образован прозрачной бесцветной веществом, которое не имеет ни сосудов, ни нервов, а его питание происходит благодаря водянистой влаге камер глаза, 3 всех сторон хрусталик охвачен бесструктурной капсулой, своей экваториальной поверхностью образует реснитчатый поясок.

Реснитчатый поясок в свою очередь соединяется с реснитчатым телом с помощью тонких соединительнотканных волокон (циннова связь), фиксирующих хрусталик и своим внутренним концом вплетаются в капсулу хрусталика, а внешним — в вийчасте тело.

Важнейшей функцией хрусталика является преломление лучей света с целью их четкого фокусирования на поверхность сетчатки. Эта его способность связана с изменением кривизны (выпуклости) хрусталика, происходит вследствие работы ресничных (цилиарного) мышц. При сокращении этих мышц реснитчатый поясок расслабляется, выпуклость хрусталика увеличивается, соответственно увеличивается его заломлювальна сила, что нужно при рассматривании близко расположенных предметов. Когда ресничные мышцы расслабляются, что бывает при рассматривании далеко расположенных предметов, реснитчатый поясок натягивается, кривизна хрусталика уменьшается, он становится более уплощенным. Заломлювальна способность хрусталика способствует тому, что изображение предметов (около или далеко расположенных) падает точно на сетчатку. Это явление называется аккомодацией. С возрастом у человека аккомодация ослабляется из-за потери хрусталиком эластичности и способности менять свою форму. Снижение аккомодации называется пресбиопии и наблюдается после 40-45 лет.

Склисте тело занимает большую часть полости глазного яблока. Оно покрыто сверху тонкой прозрачной стекловидного перепонкой. Склисте тело состоит из белковой жидкости и нежных, переплетенных между собой волоконец. Передняя его поверхность вогнутая Й обращена к задней поверхности хрусталика, имеет форму ямки, в которой лежит задний полюс хрусталика. Большая же часть хрусталика прилегает к сетчатке глазного яблока и имеет выпуклую форму.

Передняя и задняя камеры глаза заполнены водянистой влагой, выделяемой ресничных отростков и радужки. Водянистая влага имеет незначительные заломлювальни свойства и основное ее назначение состоит в обеспечении роговицы и хрусталика кислородом, глюкозой и белками. Передняя камера глаза большая и находится между роговицей и радужкой, а задняя — между радужкой и хрусталиком.

Для выразительного видение предметов необходимо, чтобы лучи от всех точек объектов, рассматриваемых попадали на поверхность сетчатки, то есть были на ней сфокусированы. Совершенно очевидно, что для обеспечения такого фокусировки требуется определенная оптическая система, которая в каждом глазу представлена ​​следующими элементами: роговица — зрачок — передняя и задняя камеры глаза (заполнены водянистой влагой) — хрусталик — склисте тело. Каждое из указанных сред имеет свой показатель оптической силы относительно преломления лучей света, которая выражается в диоптриях. Одна диоптрия (Д) является оптической силой линзы с фокусным расстоянием 1 м. За счет постоянной оптической силы роговицы и переменной оптической силы хрусталика общая оптическая сила глаза может колебаться от 59 Д (при рассматривании далеких предметов) до 70,5 Д (при рассматривании близких предметов). При этом заломлювальна сила роговицы составляет 43,05 Д, а хрусталика — от 19,11 Д (при взгляде в даль) до 33,6 Д (для близкого видения).

Оптическая система функционально нормального глаза должна обеспечивать четкое изображение любого предмета , который проецируется на сетчатку глаза. После преломления световых лучей в хрусталике на сетчатке образуется зменшене1 и обратное изображение предмета. Ребенок в первые дни по рождению весь мир видит в перевернутом виде, стремится брать предметы по ту сторону, что противоположная нужной и только через несколько месяцев у него вырабатывается способность прямого видения, как и у взрослых. Это достигается с одной стороны за счет образования соответствующих условных рефлексов, а с другой-за счет свидетельства других анализаторов и постоянной проверки зрительных ощущений ежедневной практикой.

Для нормального глаза дальняя точка ясного видения лежит в неизмеримости. Далекие предметы здоровый глаз рассматривает без напряжения аккомодации, т.е. без сокращения реснитчатого мышцы. Ближайшая точка ясного видения у взрослого) ‘человека находится на расстоянии примерно 10 см от глаза. Это значит, что предметы, которые расположены ближе 10 см нельзя четко увидеть даже при максимальном сокращении реснитчатого мышцы. Ближайшая точка ясного видения значительно меняется с возрастом: у и 0 лет она находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет — 11 см, в 40 лет — 17 см, в 50-60 лет — 50 см, в 60-70 лет — 80 см.

Способность глаза при покое аккомодации, то есть когда хрусталик максимально уплощен, называется рефракцией ‘. Различают 3 вида рефракции глаза: нормальная (пропорциональная), дальнозоркие (80-90% новорожденных детей имеют дальнозоркие рефракцию) и близорукая. В глазу с нормальной рефракцией параллельные лучи, идущие от предметов, пересекаются на сетчатке, что обеспечивает четкое видение предмета.

В состав зрительного анализатора входит рецепторный орган – глаз, проводящие пути – зрительный нерв, центры в затылочной зоне коры головного мозга. С помощью зрения человек получает более 90% информации об окружающем мире.

Глаз состоит из глазного яблока и вспомогательного аппарата (веки, ресницы, слезные железы). Глазное яблоко имеет три оболочки:

наружная – белочная, с прозрачной роговицей спереди,
сосудистая, с отверстием, область вокруг зрачка окрашена – радужка,
сетчатка, содержащая палочки и колбочки.
За радужкой находится хрусталик, способный изменять кривизну, обеспечивая фокусировку лучей света на сетчатке. Внутренняя часть глазного яблока заполнена стекловидным телом.

К распространенным нарушениям зрения относятся близорукость, когда фокусировка лучей происходит перед сетчаткой, и дальнозоркость, когда фокусировка за сетчаткой. Близорукость может быть врожденной или развиться при чтении в темноте, с близкого расстояния. Для предупреждения близорукости нужно хорошее освещение при чтении, чтобы свет при письме падал слева, следить за правильной осанкой, не читать лежа или в движущемся транспорте.

Во время работы на компьютере сосредоточенность внимания на экране приводит к задержке мигания, сухости роговицы. Напряжение глаз может при этом продолжаться несколько часов. Чтобы избежать отрицательных последствий, монитор компьютера необходимо располагать на столе (без дополнительного возвышения), т.к. при таком положении глаза чаще происходит мигание, смачивая поверхность глазного яблока. Расстояние до монитора должно составлять не менее 70 см. Регулярно проводить расслабляющие упражнения, наводя резкость по очереди на близко и далеко расположенные предметы, делать паузу в работе.


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Зрительный анализатор , строение и значение . Нарушения зрения , профилактика глазных болезней . Почему при работе на компьютере необходимо строго соблюдать режим труда и отдыха ?


  • Слуховой анализатор , строение и значение . Нарушения слуха, профилактика болезней органа слуха. Объясните, почему в самолете при взлете и посадке у людей возникают болезненные ощущения в ушах и как этого избежать.


  • Нарушения зрительного анализатора делятся: - на прогрессирующие
    Ослепшие дети обладают частично сохранившейся зрительной памятью, которую необходимо развивать.
    Причины - глазные болезни на фоне общего заболевания организма, чаще всего миопия...


  • глазным болезням .
    Строение хрусталика и стекловидного тела.
    Она также является периферическим отделом зрительного анализатора .


  • Шпаргалка по глазным болезням . Строение глаза.
    Строение сетчатой оболочки и зрительного нерва. Сетчатка способствует выстиланию всей внутренней поверхности
    Исследование органа зрения


  • Главная / Офтальмология / Шпаргалка по глазным болезням .
    Строение сетчатой оболочки и зрительного нерва.
    Исследование органа зрения начинают с внешнего осмотра глаза при естественном освещении.

Найдено похожих страниц:10




Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Жена сергея лаврова - министра иностранных дел Жена сергея лаврова - министра иностранных дел Урок-лекция Зарождение квантовой физики Урок-лекция Зарождение квантовой физики Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии Сила равнодушия: как философия стоицизма помогает жить и работать Кто такие стоики в философии